Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (4,661)
  • Open Access

    ARTICLE

    Fair-News: Digital Journalism Model to Prevent Information Pollution and Manipulation

    Savaş Takan1,*, Duygu Ergün2,*, Gökmen Katipoğlu3

    CMC-Computers, Materials & Continua, Vol.75, No.3, pp. 6059-6082, 2023, DOI:10.32604/cmc.2023.039505

    Abstract As digital data circulation increases, information pollution and manipulation in journalism have become more prevalent. In this study, a new digital journalism model is designed to contribute to the solution of the main current problems, such as information pollution, manipulation, and accountability in digital journalism. The model uses blockchain technology due to its transparency, immutability, and traceability. However, it is tough to provide the mechanisms necessary for journalism, such as updating one piece of information, instantly updating all other information affected by the updated information, establishing logical relationships between news, making quick comparisons, sorting and indexing news, and keeping the… More >

  • Open Access

    ARTICLE

    Auto-Scaling Framework for Enhancing the Quality of Service in the Mobile Cloud Environments

    Yogesh Kumar1,*, Jitender Kumar1, Poonam Sheoran2

    CMC-Computers, Materials & Continua, Vol.75, No.3, pp. 5785-5800, 2023, DOI:10.32604/cmc.2023.039276

    Abstract On-demand availability and resource elasticity features of Cloud computing have attracted the focus of various research domains. Mobile cloud computing is one of these domains where complex computation tasks are offloaded to the cloud resources to augment mobile devices’ cognitive capacity. However, the flexible provisioning of cloud resources is hindered by uncertain offloading workloads and significant setup time of cloud virtual machines (VMs). Furthermore, any delays at the cloud end would further aggravate the miseries of real-time tasks. To resolve these issues, this paper proposes an auto-scaling framework (ACF) that strives to maintain the quality of service (QoS) for the… More >

  • Open Access

    ARTICLE

    ESG Discourse Analysis Through BERTopic: Comparing News Articles and Academic Papers

    Haein Lee1, Seon Hong Lee1, Kyeo Re Lee2, Jang Hyun Kim3,*

    CMC-Computers, Materials & Continua, Vol.75, No.3, pp. 6023-6037, 2023, DOI:10.32604/cmc.2023.039104

    Abstract Environmental, social, and governance (ESG) factors are critical in achieving sustainability in business management and are used as values aiming to enhance corporate value. Recently, non-financial indicators have been considered as important for the actual valuation of corporations, thus analyzing natural language data related to ESG is essential. Several previous studies limited their focus to specific countries or have not used big data. Past methodologies are insufficient for obtaining potential insights into the best practices to leverage ESG. To address this problem, in this study, the authors used data from two platforms: LexisNexis, a platform that provides media monitoring, and… More >

  • Open Access

    ARTICLE

    MEB-YOLO: An Efficient Vehicle Detection Method in Complex Traffic Road Scenes

    Yingkun Song1, Shunhe Hong1, Chentao Hu1, Pingan He2, Lingbing Tao1, Zhixin Tie1,3,*, Chengfu Ding4

    CMC-Computers, Materials & Continua, Vol.75, No.3, pp. 5761-5784, 2023, DOI:10.32604/cmc.2023.038910

    Abstract Rapid and precise vehicle recognition and classification are essential for intelligent transportation systems, and road target detection is one of the most difficult tasks in the field of computer vision. The challenge in real-time road target detection is the ability to properly pinpoint relatively small vehicles in complicated environments. However, because road targets are prone to complicated backgrounds and sparse features, it is challenging to detect and identify vehicle kinds fast and reliably. We suggest a new vehicle detection model called MEB-YOLO, which combines Mosaic and MixUp data augmentation, Efficient Channel Attention (ECA) attention mechanism, Bidirectional Feature Pyramid Network (BiFPN)… More >

  • Open Access

    ARTICLE

    Delivery Service Management System Using Google Maps for SMEs in Emerging Countries

    Sophea Horng, Pisal Yenradee*

    CMC-Computers, Materials & Continua, Vol.75, No.3, pp. 6119-6143, 2023, DOI:10.32604/cmc.2023.038764

    Abstract This paper proposes a Delivery Service Management (DSM) system for Small and Medium Enterprises (SMEs) that own a delivery fleet of pickup trucks to manage Business-to-Business (B2B) delivery services. The proposed DSM system integrates four systems: Delivery Location Positioning (DLP), Delivery Route Planning (DRP), Arrival Time Prediction (ATP), and Communication and Data Sharing (CDS) systems. These systems are used to pinpoint the delivery locations of customers, plan the delivery route of each truck, predict arrival time (with an interval) at each delivery location, and communicate and share information among stakeholders, respectively. The DSM system deploys Google applications, a GPS tracking… More >

  • Open Access

    ARTICLE

    Classification of Electroencephalogram Signals Using LSTM and SVM Based on Fast Walsh-Hadamard Transform

    Saeed Mohsen1,2,*, Sherif S. M. Ghoneim3, Mohammed S. Alzaidi3, Abdullah Alzahrani3, Ashraf Mohamed Ali Hassan4

    CMC-Computers, Materials & Continua, Vol.75, No.3, pp. 5271-5286, 2023, DOI:10.32604/cmc.2023.038758

    Abstract Classification of electroencephalogram (EEG) signals for humans can be achieved via artificial intelligence (AI) techniques. Especially, the EEG signals associated with seizure epilepsy can be detected to distinguish between epileptic and non-epileptic regions. From this perspective, an automated AI technique with a digital processing method can be used to improve these signals. This paper proposes two classifiers: long short-term memory (LSTM) and support vector machine (SVM) for the classification of seizure and non-seizure EEG signals. These classifiers are applied to a public dataset, namely the University of Bonn, which consists of 2 classes –seizure and non-seizure. In addition, a fast… More >

  • Open Access

    ARTICLE

    Strategy for Rapid Diabetic Retinopathy Exposure Based on Enhanced Feature Extraction Processing

    V. Banupriya1,*, S. Anusuya2

    CMC-Computers, Materials & Continua, Vol.75, No.3, pp. 5597-5613, 2023, DOI:10.32604/cmc.2023.038696

    Abstract In the modern world, one of the most severe eye infections brought on by diabetes is known as diabetic retinopathy (DR), which will result in retinal damage, and, thus, lead to blindness. Diabetic retinopathy (DR) can be well treated with early diagnosis. Retinal fundus images of humans are used to screen for lesions in the retina. However, detecting DR in the early stages is challenging due to the minimal symptoms. Furthermore, the occurrence of diseases linked to vascular anomalies brought on by DR aids in diagnosing the condition. Nevertheless, the resources required for manually identifying the lesions are high. Similarly,… More >

  • Open Access

    ARTICLE

    A New Hybrid Model for Segmentation of the Skin Lesion Based on Residual Attention U-Net

    Saleh Naif Almuayqil1, Reham Arnous2,*, Noha Sakr3, Magdy M. Fadel3

    CMC-Computers, Materials & Continua, Vol.75, No.3, pp. 5177-5192, 2023, DOI:10.32604/cmc.2023.038625

    Abstract Skin segmentation participates significantly in various biomedical applications, such as skin cancer identification and skin lesion detection. This paper presents a novel framework for segmenting the skin. The framework contains two main stages: The first stage is for removing different types of noises from the dermoscopic images, such as hair, speckle, and impulse noise, and the second stage is for segmentation of the dermoscopic images using an attention residual U-shaped Network (U-Net). The framework uses variational Autoencoders (VAEs) for removing the hair noises, the Generative Adversarial Denoising Network (DGAN-Net), the Denoising U-shaped U-Net (D-U-NET), and Batch Renormalization U-Net (Br-U-NET) for… More >

  • Open Access

    ARTICLE

    Bi-LSTM-Based Deep Stacked Sequence-to-Sequence Autoencoder for Forecasting Solar Irradiation and Wind Speed

    Neelam Mughees1,2, Mujtaba Hussain Jaffery1, Abdullah Mughees3, Anam Mughees4, Krzysztof Ejsmont5,*

    CMC-Computers, Materials & Continua, Vol.75, No.3, pp. 6375-6393, 2023, DOI:10.32604/cmc.2023.038564

    Abstract Wind and solar energy are two popular forms of renewable energy used in microgrids and facilitating the transition towards net-zero carbon emissions by 2050. However, they are exceedingly unpredictable since they rely highly on weather and atmospheric conditions. In microgrids, smart energy management systems, such as integrated demand response programs, are permanently established on a step-ahead basis, which means that accurate forecasting of wind speed and solar irradiance intervals is becoming increasingly crucial to the optimal operation and planning of microgrids. With this in mind, a novel “bidirectional long short-term memory network” (Bi-LSTM)-based, deep stacked, sequence-to-sequence autoencoder (S2SAE) forecasting model… More >

  • Open Access

    ARTICLE

    Fine-Grained Multivariate Time Series Anomaly Detection in IoT

    Shiming He1,4, Meng Guo1, Bo Yang1, Osama Alfarraj2, Amr Tolba2, Pradip Kumar Sharma3, Xi’ai Yan4,*

    CMC-Computers, Materials & Continua, Vol.75, No.3, pp. 5027-5047, 2023, DOI:10.32604/cmc.2023.038551

    Abstract Sensors produce a large amount of multivariate time series data to record the states of Internet of Things (IoT) systems. Multivariate time series timestamp anomaly detection (TSAD) can identify timestamps of attacks and malfunctions. However, it is necessary to determine which sensor or indicator is abnormal to facilitate a more detailed diagnosis, a process referred to as fine-grained anomaly detection (FGAD). Although further FGAD can be extended based on TSAD methods, existing works do not provide a quantitative evaluation, and the performance is unknown. Therefore, to tackle the FGAD problem, this paper first verifies that the TSAD methods achieve low… More >

Displaying 1-10 on page 1 of 4661. Per Page  

Share Link