This paper obtains the blades deformation and aerodynamic performance of a 5MW wind turbine by bidirectional fluid-structure interaction model, the research results show the deformation of the turbine blade can reach 4.67m when wind speed is 11.4m/s. The blade deformation obviously changes the output power of the wind turbine, the output power is increased by 2.7% when the speed is 11.4m/s.
View this paper
Open Access
ARTICLE
Zine El Abidine Rahmouni1,*, Mekki Maza1, Nadia Tebbal2, Messaouda Belouadah1
FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.5, pp. 1083-1090, 2023, DOI:10.32604/fdmp.2022.021970
(This article belongs to this Special Issue: Materials and Energy an Updated Image for 2021)
Abstract The combined use of silica fume (SF) and ceramic waste (CW) for the production of mortar is studied. Sand is replaced by 5%, 10%, 15% and 20% of CW while a fixed 5% percentage (% wt of cement) of SF is used. The results show that the best results are obtained by using silica fume and ceramic waste sand with 15% weight of sand and 5% wt of cement. With the addition of sand ceramic waste (SCW), the mortar compressive strength and density increase, while the porosity displays an opposite trend. The experimental analysis is complemented with theoretical considerations on… More >
Graphic Abstract
Open Access
ARTICLE
Suzanne Daher*, Amar Benazzouk, Haïkel Ben Hamed, Thierry Langlet
FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.5, pp. 1091-1113, 2023, DOI:10.32604/fdmp.2023.020348
Abstract This work describes in detail the experimental investigation of the physico-mechanical properties of nonstructural hemp concrete (usually used as insulating wall material) when the Air-lime based Tradial PF70 binder is partially replaced using Metakaolin. The objective is to reduce the amount of free Ca2+ ions in the binder as these are responsible for the degradation of vegetables particles and can therefore induce a loss of mechanical performances. In order to assess the effectiveness of pozzolanic reaction, amounts of 0%, 10%, and 20% vol. of Air-lime binder were replaced by the Metakaolin material, while testing the mechanical properties of concrete specimens… More >
Open Access
ARTICLE
Rachedi Khadraoui1, Latra Boumaraf1,*, Philippe Haberschill2
FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.5, pp. 1115-1128, 2023, DOI:10.32604/fdmp.2022.022674
(This article belongs to this Special Issue: Materials and Energy an Updated Image for 2021)
Abstract A theoretical investigation is presented about a double evaporator ejector refrigeration cycle (DEERC). Special attention is paid to take into account the influence of the sub-cooling and superheating effects induced by an internal heat exchanger (IHX). The ejector is introduced into the baseline cycle in order to mitigate the throttling process losses and increase the compressor suction pressure. Moreover, the IHX has the structure of a concentric counter-flow type heat exchanger and is intentionally used to ensure that the fluid at the compressor inlet is vapor. To assess accurately the influence of the IHX on the DEERC performance, a mathematical… More >
Graphic Abstract
Open Access
ARTICLE
Ling Yuan1, Zhenggang Liu2,*, Li Li3, Ming Lin1
FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.5, pp. 1129-1141, 2023, DOI:10.32604/fdmp.2023.023538
Abstract The blades of large-scale wind turbines can obviously deform during operation, and such a deformation can affect the wind turbine’s output power to a certain extent. In order to shed some light on this phenomenon, for which limited information is available in the literature, a bidirectional fluid-structure interaction (FSI) numerical model is employed in this work. In particular, a 5 MW large-scale wind turbine designed by the National Renewable Energy Laboratory (NREL) of the United States is considered as a testbed. The research results show that blades’ deformation can increase the wind turbine’s output power by 135 kW at rated working conditions.… More >
Graphic Abstract
Open Access
ARTICLE
Zhuang Wu1,2, Chang Su1,2,*, Hua Xu1,2, Liu Wang1,2
FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.5, pp. 1143-1157, 2023, DOI:10.32604/fdmp.2022.022496
(This article belongs to this Special Issue: Simulation of the Structure-Fluid Interaction and Heat Transfer)
Abstract The cyclone dust collector is an important subsystem of straw crushers used in agriculture. In the present study, a new type of dust collector with involute morphology is proposed to obtain better dust removal efficiency with respect to that of classical tangential and spiral dust collectors. A discrete phase model (DPM) method is used in synergy with a turbulence model, and the SIMPLE algorithm to simulate the flow field inside the dust collector and the related particle dynamics. It is shown that the internal flow field features a primary swirl, a secondary swirl and blockage effects. Moreover, for the involute… More >
Graphic Abstract
Open Access
ARTICLE
Sen Zhang1, Jie Jiang2,3,*, Yuedong Wang4
FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.5, pp. 1159-1172, 2023, DOI:10.32604/fdmp.2022.024070
(This article belongs to this Special Issue: Computational Mechanics and Fluid Dynamics in Intelligent Manufacturing and Material Processing)
Abstract To improve the application of discrete element models (DEM) to the design of agricultural crushers, in this study
a new highly accurate model is elaborated. The model takes into account the fiber structure, porous nature of the
material and the leaf sheath coating structure. Dedicated experimental tests are conducted to determine the
required “intrinsic” and basic contact parameters of the considered banana straw materials. A large number of
bonding parameters are examined in relation to the particle aggregation model in order to characterize different
actual banana straws. Using the particle surface energy contact model, the viscosity characteristics of the crushed… More >
Graphic Abstract
Open Access
ARTICLE
Jike Gao1, Fawei Li2,*, Shangjun Liu1
FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.5, pp. 1173-1187, 2023, DOI:10.32604/fdmp.2022.021140
(This article belongs to this Special Issue: Advanced Materials, Processing and Testing Technology)
Abstract Composite fabrics based on Polytetrafluoroethylene (PTFE) polymer displays several notable properties. They are waterproof, windproof, permeable to moisture and thermally insulating at the same time. In the present study, PTFE fibers are used as raw material to make fiber membranes. The film is formed by crisscrossing interconnected fiber filaments and the related air permeability: tensile creep characteristics and other properties are tested. The results show that the pore size, thickness, and porosity of the film itself can affect the moisture permeability of the film. The water pressure resistance of the selected fabric is 8.5 kPa, and the moisture permeability is… More >
Open Access
ARTICLE
Shaojie Feng*, Leipeng Liu, Chen Gao, Hang Hu
FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.5, pp. 1189-1201, 2023, DOI:10.32604/fdmp.2023.023637
Abstract The present study considers the damage mechanisms and the rainfall infiltration process responsible for landslide
phenomena which originate from accumulation slopes. Accordingly, a physical test model is developed for different slopes and different rainfall conditions. Moreover, a three-dimensional laser scanner and a camera are used
to monitor the slope erosion and the landslide dynamic evolution. Using this approach, the time variation curves
of volumetric water content, pore water pressure, soil pressure, slope deformation, and damage are determined.
The results show that under similar conditions, similar trends of the pore water pressure are achieved for different
slopes and rainfall intensities. More >
Graphic Abstract
Open Access
ARTICLE
Guangsheng Liu1,2, Qingming Gan1,2, Wen Wu3, Haitao Yang1,2, Yiming Lv1,2, Wenhao Cui1,2, Wei Lin4,*
FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.5, pp. 1203-1214, 2023, DOI:10.32604/fdmp.2023.022022
Abstract The finite element method has been applied to simulate the dynamics of a water plugging string in a complex horizontal well of a low-permeability oilfield. The force associated with the pipe string and the packer has been determined under the sucking action of the oil well pump. Such analysis has been conducted for a real drilling well, taking into account the process of lifting, lowering, unblocking and water plugging. Comparison between field measured data and simulation data indicates that the model is reliable and accurate. The packer creep effect under different pressure differences has also been investigated in the framework… More >
Open Access
ARTICLE
Leiju Tian1, Yuhuan Bu1,*, Huajie Liu1,*, Lingyun Zhao2,3
FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.5, pp. 1215-1226, 2023, DOI:10.32604/fdmp.2022.022219
Abstract The mechanical properties of Portland cement differ from the weakly consolidated shallow formation in deep water. This results in undesired abrupt changes in the compressive strength and elastic modulus at the cement–formation interface. In this study, a water-borne epoxy resin was applied as a strengthening material to reinforce the weakly consolidated shallow formation and protect the cement sheath from potential failure. The mechanical properties of the unconsolidated clay were tested, including their changes with increases in the temperature and curing time. In addition, the effects of the seawater, cement slurry alkaline filtrate, and saltwater drilling fluid were evaluated. As confirmed… More >
Open Access
ARTICLE
Nisrine Hanchi*, Hamid Hamza, Jawad Lahjomri, Khalid Zniber, Abdelaziz Oubarra
FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.5, pp. 1227-1236, 2023, DOI:10.32604/fdmp.2023.022530
(This article belongs to this Special Issue: Materials and Energy an Updated Image for 2021)
Abstract The work deals with the thermal behavior of a conventional partition wall incorporating a phase change material (PCM). The wall separates two environments with different thermal properties. The first one is conditioned, while the adjacent space is characterized by a temperature that changes sinusoidally in time. The effect of the PCM is assessed through a comparative analysis of the cases with and without PCM. The performances are evaluated in terms of dimensionless energy stored within the wall, comfort temperature and variations of these quantities as a function of the amount of PCM and its emplacement. More >
Open Access
ARTICLE
Yanjun Li1, Wandong Zhang1, Jiang Wu1, Yuhao Yang1, Chao Zhang1, Huanqiang Yang2,*
FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.5, pp. 1237-1248, 2023, DOI:10.32604/fdmp.2022.023147
(This article belongs to this Special Issue: Meshless, Mesh-Based and Mesh-Reduction Methods Based Analysis of Fluid Flow in Porous Media)
Abstract Air channeling in the annulus between the casing and the cement sheath and/or between the cement sheath and formation is the main factor affecting the safe operation of natural gas wells at high temperatures and pressures. Prevention of this problem requires, in general, excellent anti-channeling performances of the cement sheath. Three methods to predict such anti-channeling performances are proposed here, which use the weightless pressure of cement slurry, the permeability of cement stone and the volume expansion rate of cement sheath as input parameters. Guided by this approach, the anti-channeling performances of the cement slurry are evaluated by means of… More >
Open Access
ARTICLE
Aysha Shabana1,2,*, Asha Crasta1, Sher Afghan Khan3, Abdul Aabid4, Muneer Baig4
FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.5, pp. 1249-1267, 2023, DOI:10.32604/fdmp.2023.023158
(This article belongs to this Special Issue: Materials, Energy, and Fluid Dynamics)
Abstract This work aims to compute stability derivatives in the Newtonian limit in pitch when the Mach number tends to
infinity. In such conditions, these stability derivatives depend on the Ogive’s shape and not the Mach number.
Generally, the Mach number independence principle becomes effective from M = 10 and above. The Ogive nose
is obtained through a circular arc on the cone surface. Accordingly, the following arc slopes are considered λ = 5,
10, 15, −5, −10, and −15. It is found that the stability derivatives decrease due to the growth in λ from 5 to 15 and
vice versa.… More >
Open Access
ARTICLE
Mingjing Lu1,2,*, Zenglin Wang1,3, Aishan Li1, Liaoyuan Zhang1, Bintao Zheng1, Zilin Zhang1
FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.5, pp. 1269-1281, 2023, DOI:10.32604/fdmp.2023.023188
(This article belongs to this Special Issue: Meshless, Mesh-Based and Mesh-Reduction Methods Based Analysis of Fluid Flow in Porous Media)
Abstract A mathematical model for the gas-water two-phase flow in tight gas reservoirs is elaborated. The model can
account for the gas slip effect, stress sensitivity, and high-speed non-Darcy factors. The related equations are
solved in the framework of a finite element method. The results are validated against those obtained by using
the commercial software CMG (Computer Modeling Group software for advanced recovery process simulation).
It is shown that the proposed method is reliable. It can capture the fracture rejection characteristics of tight gas
reservoirs better than the CMG. A sensitivity analysis of various control factors (initial water saturation, reservoir
parameters,… More >
Open Access
ARTICLE
Marwa El Yassi1,2,*, Ikram El Abbassi1,2, Alexandre Pierre2, Yannick Melinge3
FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.5, pp. 1283-1290, 2023, DOI:10.32604/fdmp.2022.023183
(This article belongs to this Special Issue: Materials and Energy an Updated Image for 2021)
Abstract Phase change materials (PCMs) have the ability to store thermal energy and make it available at a later stage to keep indoor temperature within a specific range and achieve better thermal comfort in buildings. This study focuses on the performances of materials obtained by combining a standard building material with a PCM. In particular, two different materials mixed with the same PCM are considered under the same climatic conditions. The related thermal behavior is assessed in the framework of numerical simulations conducted with ANSYS Fluent assuming parameters representative of a city located in Europe. The results show that the addition… More >
Open Access
ARTICLE
Chunqin Tan1, Shenglai Guo2,3,*, Juanjuan Huang4
FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.5, pp. 1291-1300, 2023, DOI:10.32604/fdmp.2022.022233
Abstract Generally, the so-called expansion agent is very effective in eliminating all the micro-annuli that exist between the casing and the cement sheath or between the cement sheath and the formation. However, this approach can detrimentally affect the sealing ability of cement sheath if the expansion agent is used in an unreasonable way. For these reasons, in the present work, numerical simulations have been conducted to analyze the effect of elasticity modulus of cement sheath, the elasticity modulus of formation, the expansion rate of cement, the geo-stress on the micro-annulus caused by cement expansion, and the cement sheath expansion on the… More >
Open Access
ARTICLE
Maosheng Wang, Yanyang Wang, Yihua Cao*, Qiang Zhang
FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.5, pp. 1301-1315, 2023, DOI:10.32604/fdmp.2023.023435
Abstract The so-called coaxial compound helicopter features two rigid coaxial rotors, and possesses high-speed capabilities. Nevertheless, the small separation of the coaxial rotors causes severe aerodynamic interactions, which require careful analysis. In the present work, the aerodynamic interaction between the various helicopter components is investigated by means of a numerical method considering both hover and forward flight conditions. While a sliding mesh method is used to deal with the rotating coaxial rotors, the Reynolds-Averaged Navier-Stokes (RANS) equations are solved for the flow field. The Caradonna & Tung (CT) rotor and Harrington-2 coaxial rotor are considered to validate the numerical method. The… More >
Open Access
ARTICLE
Kefan Yang1,*, Youmin Wang1, Kexun Fu1, Jiaqi Chen2
FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.5, pp. 1317-1338, 2023, DOI:10.32604/fdmp.2023.024265
(This article belongs to this Special Issue: Computational Mechanics and Fluid Dynamics in Intelligent Manufacturing and Material Processing)
Abstract The design of hydro-bulge molds, able to provide hollow parts with special-shaped cross-sections, is still a pretty complicated task (especially for what concerns the design of the related hydraulic system and its “synchronization”). In the present work, this task is addressed through the introduction of a new type of overhead cylinder hydraulic synchronization system, able to correct automatically any deviation from the optimal process. Using the AMESim software, the displacement synchronization curve of the piston rods of the two cylinders is obtained and it is verified that the system is able to implement an automatic deviation correction function by adjusting… More >