Home / Journals / CMC / Online First
Table of Content
  • Open Access

    ARTICLE

    Thalassemia Screening by Sentiment Analysis on Social Media Platform Twitter

    Wadhah Mohammed M. Aqlan1, Ghassan Ahmed Ali2,*, Khairan Rajab2, Adel Rajab2, Asadullah Shaikh2, Fekry Olayah2, Shehab Abdulhabib Saeed Alzaeemi3,*, Kim Gaik Tay3, Mohd Adib Omar1, Ernest Mangantig4
    CMC-Computers, Materials & Continua, DOI:10.32604/cmc.2023.039228
    Abstract Thalassemia syndrome is a genetic blood disorder induced by the reduction of normal hemoglobin production, resulting in a drop in the size of red blood cells. In severe forms, it can lead to death. This genetic disorder has posed a major burden on public health wherein patients with severe thalassemia need periodic therapy of iron chelation and blood transfusion for survival. Therefore, controlling thalassemia is extremely important and is made by promoting screening to the general population, particularly among thalassemia carriers. Today Twitter is one of the most influential social media platforms for sharing opinions and discussing different topics like… More >

  • Open Access

    ARTICLE

    Virtual Machine Consolidation with Multi-Step Prediction and Affinity-Aware Technique for Energy-Efficient Cloud Data Centers

    Pingping Li*, Jiuxin Cao
    CMC-Computers, Materials & Continua, DOI:10.32604/cmc.2023.039076
    Abstract Virtual machine (VM) consolidation is an effective way to improve resource utilization and reduce energy consumption in cloud data centers. Most existing studies have considered VM consolidation as a bin-packing problem, but the current schemes commonly ignore the long-term relationship between VMs and hosts. In addition, there is a lack of long-term consideration for resource optimization in the VM consolidation, which results in unnecessary VM migration and increased energy consumption. To address these limitations, a VM consolidation method based on multi-step prediction and affinity-aware technique for energy-efficient cloud data centers (MPaAFVMC) is proposed. The proposed method uses an improved linear… More >

  • Open Access

    ARTICLE

    Image Generation of Tomato Leaf Disease Identification Based on Small-ACGAN

    Huaxin Zhou1,2, Ziying Fang3, Yilin Wang4, Mengjun Tong1,2,*
    CMC-Computers, Materials & Continua, DOI:10.32604/cmc.2023.037342
    Abstract Plant diseases have become a challenging threat in the agricultural field. Various learning approaches for plant disease detection and classification have been adopted to detect and diagnose these diseases early. However, deep learning entails extensive data for training, and it may be challenging to collect plant datasets. Even though plant datasets can be collected, they may be uneven in quantity. As a result, the problem of classification model overfitting arises. This study targets this issue and proposes an auxiliary classifier GAN (small-ACGAN) model based on a small number of datasets to extend the available data. First, after comparing various attention… More >

  • Open Access

    ARTICLE

    Traffic Sign Detection with Low Complexity for Intelligent Vehicles Based on Hybrid Features

    Sara Khalid1, Jamal Hussain Shah1,*, Muhammad Sharif1, Muhammad Rafiq2, Gyu Sang Choi3,*
    CMC-Computers, Materials & Continua, DOI:10.32604/cmc.2023.035595
    Abstract Globally traffic signs are used by all countries for healthier traffic flow and to protect drivers and pedestrians. Consequently, traffic signs have been of great importance for every civilized country, which makes researchers give more focus on the automatic detection of traffic signs. Detecting these traffic signs is challenging due to being in the dark, far away, partially occluded, and affected by the lighting or the presence of similar objects. An innovative traffic sign detection method for red and blue signs in color images is proposed to resolve these issues. This technique aimed to devise an efficient, robust and accurate… More >

  • Open Access

    ARTICLE

    Spatial Correlation Module for Classification of Multi-Label Ocular Diseases Using Color Fundus Images

    Ali Haider Khan1,2,*, Hassaan Malik2, Wajeeha Khalil3, Sayyid Kamran Hussain4, Tayyaba Anees5, Muzammil Hussain2
    CMC-Computers, Materials & Continua, DOI:10.32604/cmc.2023.039518
    Abstract To prevent irreversible damage to one’s eyesight, ocular diseases (ODs) need to be recognized and treated immediately. Color fundus imaging (CFI) is a screening technology that is both effective and economical. According to CFIs, the early stages of the disease are characterized by a paucity of observable symptoms, which necessitates the prompt creation of automated and robust diagnostic algorithms. The traditional research focuses on imagelevel diagnostics that attend to the left and right eyes in isolation without making use of pertinent correlation data between the two sets of eyes. In addition, they usually only target one or a few different… More >

  • Open Access

    ARTICLE

    Characterization of Memory Access in Deep Learning and Its Implications in Memory Management

    Jeongha Lee1, Hyokyung Bahn2,*
    CMC-Computers, Materials & Continua, DOI:10.32604/cmc.2023.039236
    Abstract Due to the recent trend of software intelligence in the Fourth Industrial Revolution, deep learning has become a mainstream workload for modern computer systems. Since the data size of deep learning increasingly grows, managing the limited memory capacity efficiently for deep learning workloads becomes important. In this paper, we analyze memory accesses in deep learning workloads and find out some unique characteristics differentiated from traditional workloads. First, when comparing instruction and data accesses, data access accounts for 96%–99% of total memory accesses in deep learning workloads, which is quite different from traditional workloads. Second, when comparing read and write accesses,… More >