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Abstract: In the paper an important issue of vibrations of the transmission line 
in real conditions was analyzed. Such research was carried out by the authors of 
this paper taking into account the cross-section of the cable being in use on the 
transmission line. Analysis was performed for the modern ACSR high voltage 
transmission line with span of 213.0 m. The purpose of the investigation was to 
analyze the vibrations of the power transmission line in the natural environment 
and compare with the results obtained in the numerical simulations. Analysis was 
performed for natural and wind excited vibrations. The numerical model was 
made using the Spectral Element Method. In the spectral model, for various 
parameters of stiffness, damping and tension force, the system response was 
checked and compared with the results of the accelerations obtained in the situ 
measurements. A frequency response functions (FRF) were calculated. The 
credibility of the model was assessed through a validation process carried out by 
comparing graphical plots of FRF functions and numerical values expressing 
differences in acceleration amplitude (MSG), phase angle differences (PSG) and 
differences in acceleration and phase angle total (CSG) values. Particular 
attention was paid to the hysteretic damping analysis. Sensitivity of the wave 
number was performed for changing of the tension force and section area of the 
cable. The next aspect constituting the purpose of this paper was to present the 
wide possibilities of modelling and simulation of slender conductors using the 
Spectral Element Method. The obtained results show very good accuracy in the 
range of both experimental measurements as well as simulation analysis. The 
paper emphasizes the ease with which the sensitivity of the conductor and its 
response to changes in density of spectral mesh division, cable cross-section, 
tensile strength or material damping can be studied. 
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1 Introduction 
The rapid development of technology causes that modern construction objects have high strength 

parameters with low structural stiffness and low damping coefficient. These objects are particularly 
susceptible to dynamic load such as wind. Such structures include among others: tall buildings, chimneys, 
masts, suspended and cable stayed bridges and overhead transmission lines. 

Overhead transmission lines are constantly subjected to variable wind loads which may gradually 
lead to the impairment of their durability, resulting in the shortened service life. That is the huge need to 
design and construct the overhead transmission lines with the respect of wide range of load cases acting 
on these slender structures. This is very important to develop the easy and fast methodology for design, 
taking into consideration all loads and uncertainties. Nowadays we see the wide development of new 
materials and solutions to raise the conductivity but at the same time we observe that conductors’ 
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durability is change and require the permanent update analysis. Spectral Element Method seems to be 
such fast and easy tool which fulfills these requirements. 
There are some theoretical and experimental researches on overhead transmission lines [1-5]. Wind forces 
cause three main types of conductor vibrations: Aeolian vibrations with a frequency from 3 to 150 Hz and 
amplitudes lower than the conductor diameter, galloping with a frequency from 0.1 to 1 Hz and 
amplitudes from ± 0.1 to 1 of conductor sag, wake induced vibrations with a frequency from 0.15 to 10 
Hz and amplitudes from 0.5 to 80 times the conductor diameter [6-9]. 

The majority of common wind induced vibrations are Aeolian vibrations. These vibrations are 
generated as a result of vortices shed in the conductor wake under sustained wind of low speed from 1 to 
7 m/s-they occur mainly in the vertical plane [7]. Vibrations of conductors both single and in a bundle, 
form standing waves with forced nodes and intermediate nodes located along the span at intervals 
depending on the frequency of free vibrations. When the conductor wind flow is laminar, alternately 
shedding vortices are formed in two points of the suction zone and make the conductor move 
perpendicularly towards the wind direction. The alternate shedding of vortices is regular. As a result, a so-
called Karman vortex street is formed. When the frequency of the shedding of vortices is approximately 
equal to one of the frequencies of free vibrations of a conductor, a ‘lock-in’ phenomenon occurs. During 
this frequency synchronization, the conductor is in the resonance state. Aeolian vibrations occur on single 
conductors and conductors in a bundle. Although these vibrations are hardly noticeable due to low 
amplitude values (lower than the conductor diameter), they are very important, since they can lead to 
fatigue destruction of a conductor in points of high stress concentrations. 

Galloping is an aero elastic self-excitation phenomenon characterized by low frequencies and high 
amplitudes, and it refers to single conductors and conductors in a bundle, with one or two loops of 
standing and running waves, or their combination in a conductor span. Standing waves may have one or 
more loops (up to 10) over the span length. However, a small number of loops are predominant. In most 
cases, galloping is caused by sustained wind of an average and high speed (V > 15 m/s), blowing on an 
asymmetrically loaded (e.g., with ice or wet snow) conductor. High amplitudes are observed in the 
vertical plane, whereas the frequencies depend on the type of a conductor and vibrations [4,10]. Galloping 
is a typical instability caused by the coupling of aerodynamic forces which affect the conductor with its 
vibrations. Conductor vibrations change the wind angle of attack on a periodic basis. The change of the 
angle of attack results in a change of aerodynamic forces affecting the conductor, which consequently 
changes the conductor response. The first, simplified criterion (if a single degree-of-freedom system is 
applied) pertaining to the instability connected with galloping was presented by Den Hartog [42] and 
developed by other researchers [10]. A precondition for galloping (on the basis of the quasi-steady theory) 
is the presence of negative aero elastic damping in the system. A conductor of a circular section cannot 
gallop due to its geometrical symmetry (dCL/dα = 0), unless this section is changed. Icing of a conductor 
changes its cross-section, thus it leads to its aerodynamic instability [10]. Research works carried out by 
Den Hartog indicate that the aerodynamic instability is the main reason for the galloping phenomenon. 
His research was conducted with an assumption that the vertical motion of a conductor is predominant, 
and the effect of torsion and horizontal motions can be ignored. Further research proved that the torsion 
motion is an integral part of the galloping phenomenon. The effect of a coupled torsion-translational 
motion plays a crucial role in most cases of progressing galloping [11].  

These extremely important phenomena described above have mobilized the authors of the article to 
look for transmission line vibration solutions using numerical methods. Spectral Element Method (SEM) 
proved to be such a method. SEM is a meshing method similar to Finite Element Method (FEM), where 
the approximated element shape functions are substituted by exact dynamic shape functions obtained 
from the exact solution of governing differential equations. Therefore, a single element is sufficient to 
model any continuous and uniform part of the structure. This feature reduces significantly the number of 
elements required in the structure model and improves the accuracy of the dynamic system solution. At 
the same time, there are some drawbacks like the unavailability of exact wave solutions for most complex 
and 2D and 3D structures. In these cases, approximated spectral element modelling can be used and may 
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still provide very accurate solutions. Although SEM ensures exact frequency-domain it is not true for 
time-domain solutions, because errors due to aliasing or leakage are inevitable in the use of the inverse-
DFT process. Thus, special attention in obtaining the inverse-DFT is required. In recent years some 
researchers were performed with use of SEM. The extensive study of the fundamentals and a variety of 
new applications such as composite laminated, periodic lattice, damage detection was presented in [12]. 
The wave behavior in composites and inhomogeneous media is studied in [13]. Studies related to 
structural damage detection have been developed in [14]. Other works using wave propagation and SEM 
to detect damage under the presence of structural randomness can also be found in references [15-17]. 

2 Mathematical Model of Overhead Transmission Line 
Considering a simplified cable model, as shown in Fig. 1, the governing differential equation for the 

undamped free vibration is given by Clough and Yu [18-19]: 

𝐸𝐸𝐸𝐸
𝜕𝜕4𝑣𝑣
𝜕𝜕𝑥𝑥4
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= 0 
(1) 

 
Figure 1: Analysed model 

 
For a simply supported beam under axial force the natural frequency can be written as [20]: 

𝜔𝜔𝑛𝑛 =
𝜋𝜋2

𝐿𝐿2
�
𝐸𝐸𝐸𝐸
𝜌𝜌𝜌𝜌�

𝑛𝑛4 +
𝑛𝑛2𝑇𝑇𝐿𝐿2

𝜋𝜋2𝐸𝐸𝐸𝐸 �

1
2

,       𝑛𝑛 = 1,2, . .. 
(2) 

where 𝜌𝜌𝜌𝜌 is mass per unit length, 𝐸𝐸𝐸𝐸 the uniform bending rigidity, 𝐿𝐿  is cable length, 𝑇𝑇 is tension force, 
and 𝑣𝑣(𝑥𝑥, 𝑡𝑡) is the cable displacement as a function of the position 𝑥𝑥 and time 𝑡𝑡. 

The undamped Euler-Bernoulli beam equation of motion subjected to axial force and under bending 
vibration is governing by Eq. (1).  Fig. 2 shows an elastic two-node element with a uniform rectangular 
cross-section subjected to an axial force, where the properties are assumed to be deterministic variables. 
A structural internal damping is introduced into the beam formulation by adding into Young’s modulus 
weighted by a complex damping factor  𝑖𝑖𝑖𝑖, 𝑖𝑖 =  √−1,𝑖𝑖 is the hysteretic structural loss factor, to obtain 
𝐸𝐸 = 𝐸𝐸(1 + 𝑖𝑖𝑖𝑖). 
 

 
Figure 2: Two-node spectral element 

 
By considering a constant coefficient a displacement solution can be assumed of the form [21-22]: 

𝑣𝑣(𝑥𝑥, 𝑡𝑡) = 𝑣𝑣0𝑒𝑒−𝑖𝑖(𝑘𝑘𝑘𝑘−𝜔𝜔𝜔𝜔) (3) 
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where 𝑣𝑣0  is a amplitude, 𝜔𝜔 is the frequency and 𝑘𝑘 is the wave number. Substituting it at Eq. (1), the 
dispersion equation is given by: 
𝑘𝑘4𝐸𝐸𝐸𝐸 + 𝑘𝑘2𝑇𝑇 − 𝜔𝜔2𝜌𝜌𝜌𝜌 = 0 (4) 

There are two distinct wave modes in the positive direction (𝑘𝑘2), which is positive-going waves with 
wave numbers given as 
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(6) 

The general solution for the Euler-Bernoulli beam spectral element subjected to axial load of length 𝐿𝐿, 
can be expressed in the form: 
𝑣𝑣(𝑥𝑥,𝜔𝜔) = 𝑎𝑎1𝑒𝑒−𝑖𝑖𝑘𝑘𝑘𝑘 + 𝑎𝑎2𝑒𝑒−𝑘𝑘𝑘𝑘 + 𝑎𝑎3𝑒𝑒−𝑖𝑖𝑘𝑘(𝐿𝐿−𝑘𝑘) + 
       + 𝑎𝑎4𝑒𝑒−𝑘𝑘(𝐿𝐿−𝑘𝑘) = 𝒔𝒔(𝑥𝑥,𝜔𝜔)𝒂𝒂 

(7) 

where 
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(9) 
The spectral nodal displacements and slopes of the beam element are related to the displacement field 

at node 1 (x=0) and node 2 (x=L), by 
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By substituting Eq. (7) into the right-hand side of Eq. (10) and written in a matrix form gives 
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(12) 

The frequency-dependent displacement within an element is interpolated from the nodal displacement 
vector d, by eliminating the constant vector a  from Eq. (7) and using Eq. (11), it is expressed as: 
𝑣𝑣(𝑥𝑥,𝜔𝜔) = 𝒈𝒈(𝑥𝑥,𝜔𝜔)𝒅𝒅 (13) 

where the shape function is 
𝒈𝒈(𝒙𝒙,𝜔𝜔) = 𝒔𝒔(𝒙𝒙,𝜔𝜔)𝑮𝑮−1(𝜔𝜔) = 𝒔𝒔(𝒙𝒙,𝜔𝜔)𝚪𝚪(𝜔𝜔) (14) 

The dynamic stiffness matrix for the spectral beam element under axial tension can be determined as: 
𝑺𝑺(𝜔𝜔) = 𝑲𝑲(𝜔𝜔)−  𝜔𝜔2𝑴𝑴(𝜔𝜔) (15) 



SV, 2019, vol.53, no.4                                                                                                                                                 165 

where 

𝑲𝑲(𝜔𝜔) = ��𝐸𝐸𝐸𝐸𝒈𝒈′′(𝑥𝑥)𝑇𝑇𝒈𝒈′′(𝑥𝑥) + 𝑇𝑇𝒈𝒈′(𝑥𝑥)𝑇𝑇𝒈𝒈′(𝑥𝑥)�𝑑𝑑𝑥𝑥
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(17) 

where ’ express the spatial partial derivative. By solving the integral, the dynamic stiffness matrix is: 
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where ∆ = cos(k L)cosh(k L) − 1 and the components of element matrix (Eq. (18)) are given as 
𝑠𝑠11 = −𝑘𝑘3(𝑐𝑐𝑐𝑐𝑠𝑠(𝑘𝑘𝐿𝐿)𝑠𝑠𝑖𝑖𝑛𝑛ℎ (𝑘𝑘𝐿𝐿) + 𝑠𝑠𝑖𝑖𝑛𝑛(𝑘𝑘𝐿𝐿)𝑐𝑐𝑐𝑐𝑠𝑠ℎ(𝑘𝑘𝐿𝐿))  

𝑠𝑠12 = −𝑘𝑘2𝑠𝑠𝑖𝑖𝑛𝑛 (𝑘𝑘𝐿𝐿)𝑠𝑠𝑖𝑖𝑛𝑛ℎ (𝑘𝑘𝐿𝐿)  
𝑠𝑠13 = 𝑘𝑘3 (𝑠𝑠𝑖𝑖𝑛𝑛 (𝑘𝑘𝐿𝐿) + 𝑠𝑠𝑖𝑖𝑛𝑛ℎ (𝑘𝑘𝐿𝐿))  
𝑠𝑠14 = 𝑘𝑘2 (𝑐𝑐𝑐𝑐𝑠𝑠(𝑘𝑘𝐿𝐿) − 𝑐𝑐𝑐𝑐𝑠𝑠ℎ(𝑘𝑘𝐿𝐿))  
𝑠𝑠22 = 𝑘𝑘(𝑐𝑐𝑐𝑐𝑠𝑠(𝑘𝑘𝐿𝐿)𝑠𝑠𝑖𝑖𝑛𝑛ℎ(𝑘𝑘𝐿𝐿) − 𝑠𝑠𝑖𝑖𝑛𝑛(𝑘𝑘𝐿𝐿) 𝑐𝑐𝑐𝑐𝑠𝑠ℎ(𝑘𝑘𝐿𝐿)) (19) 
𝑠𝑠23 = 𝑘𝑘2(𝑐𝑐𝑐𝑐𝑠𝑠ℎ(𝑘𝑘𝐿𝐿) − 𝑐𝑐𝑐𝑐𝑠𝑠(𝑘𝑘𝐿𝐿))  
𝑠𝑠24 = 𝑘𝑘(𝑠𝑠𝑖𝑖𝑛𝑛 (𝑘𝑘𝐿𝐿) − 𝑠𝑠𝑖𝑖𝑛𝑛ℎ(𝑘𝑘𝐿𝐿))  
𝑠𝑠33 = −𝑘𝑘3(𝑐𝑐𝑐𝑐𝑠𝑠(𝑘𝑘𝐿𝐿)𝑠𝑠𝑖𝑖𝑛𝑛ℎ(𝑘𝑘𝐿𝐿) + 𝑠𝑠𝑖𝑖𝑛𝑛(𝑘𝑘𝐿𝐿)𝑐𝑐𝑐𝑐𝑠𝑠ℎ(𝑘𝑘𝐿𝐿))  
𝑠𝑠34 = 𝑘𝑘2 𝑠𝑠𝑖𝑖𝑛𝑛(𝑘𝑘𝐿𝐿) 𝑠𝑠𝑖𝑖𝑛𝑛ℎ(𝑘𝑘𝐿𝐿)  
𝑠𝑠44 = 𝑘𝑘(𝑐𝑐𝑐𝑐𝑠𝑠(𝑘𝑘𝐿𝐿) 𝑠𝑠𝑖𝑖𝑛𝑛ℎ(𝑘𝑘𝐿𝐿) − 𝑠𝑠𝑖𝑖𝑛𝑛(𝑘𝑘𝐿𝐿) 𝑐𝑐𝑐𝑐𝑠𝑠ℎ(𝑘𝑘𝐿𝐿))  

As far as structure beam is uniform without any sources of discontinuity, it can be represented by a 
single spectral element with very accurate solutions [23]. However, if there exist sources of discontinuity 
such as the point loads the beam should be spatially discretized into spectral elements. Analogous to 
Finite Element Method (FEM) [24], the spectral elements can be assembled to form a global structure 
matrix system [12] 
 
3 Validation and Verification 
The article presents a validation analysis in relation to the measurement and the simulation model. 
The essence of using computer simulation methods requires determining their level of accuracy in relation 
to direct measurement of the actual model. The required level of accuracy of the simulation depends on 
the purposes for which the simulation is applied. According to AIAA and ASME [25-26] validation and 
verification are the basic tools used to determine the credibility of the used model. Validation explains 
how the model represents reality, while verification determines that the implementation of the model 
properly represents the adopted description and solutions of the model application. In the validation 
process, the accuracy is referred to the measurement results, in verification the accuracy is referred to the 
pattern obtained in the calculation model. Uncertainty and error are the reasons that affect the accuracy of 
results obtained in the modelling and simulation process. Uncertainty results from the lack of knowledge 
or incomplete knowledge about the physical characteristics, the analyzed parameter, wrong assumptions 
concerning, for example, the flow of wind around the analyzed body with different surface porosity, may 
result from the complexity of the phenomenon, e.g., wind turbulence. Errors can be classified as 
confirmed and unconfirmed (conscious and unconscious). Errors in rounding are confirmed errors, while 
programming errors are not anomalous errors. The validation strategy is to identify and quantify errors 
and uncertainties in the conceptual and computational model. 
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The strategy of model verification is connected with the identification and quantification of errors 
consisting in obtaining inappropriate convergence of spatial and temporal discretization, convergence of 
iterations and computer programming. The essence of verification consists in a detailed analysis of the 
size of the division grid and the time step. With the size of the grid size and the time step approaching 
zero, the discretization error should asymptotically reach zero. 

Validation metrics is the subject of interest of many researchers. Oberkampf and Trucano [27] 
present an extensive review of the literature in validation and verification (V&V) in computational fluid 
dynamics (CFD), discusses methods and procedures for assessing V&V, and develops a number of 
extensions to existing ideas. The review of the development of V&V terminology and methodology 
points out the contributions from members of the operations research, statistics, and CFD communities. 
Authors explain that the fundamental strategy of verification is the identification and quantification of 
errors in the computational model and its solution. A set of guidelines is proposed for designing and 
conducting validation experiments, supported by an explanation of how validation experiments are 
different from traditional experiments and testing. A description is given of a relatively new procedure for 
estimating experimental uncertainty that has proven more effective at estimating random and correlated 
bias errors in wind-tunnel experiments than traditional methods.  

Aeschliman, Oberkampf and Blottner [28] describe a methodology for verification, calibration, and 
validation (VCV). A novel approach to uncertainty analysis is described which can both distinguish 
between and quantify various types of experimental error, and whose attributes are used to help define an 
appropriate experimental design for code VCV experiments.  

Schwer [29] presents developed metrics and their wave form comparative quantification was 
demonstrated through application to analytical wave forms, measured and computed free-field velocity 
histories, and comparison with Subject Matter Expert opinion. 

William, Oberkampf and Smith [30] propose a framework for assessing validation experiments for 
computational fluid dynamics regarding information content, data completeness, and uncertainty 
quantification. This framework combines two concepts: the concept of a strong-sense benchmark for 
validation experiments and the modelling assessment procedure referred to as the predictive capability 
maturity method. The validation experiment assessment requirements are captured in a table of attributes: 
Experimental Facility, Analog Instrumentation and Signal Processing, Boundary and Initial Conditions, 
Fluid and Material Properties, Test Conditions, and Measurement of System Responses and four levels of 
information completeness for each attribute.  

William, Oberkampf and Barone [31] develop a validation metric that is based on the statistical 
concept of confidence intervals. Using this fundamental concept, two specific metrics: one that requires 
interpolation of experimental data and one that requires regression (curve fitting) of experimental data. 
Authors discuss how the present metrics are easily interpretable for assessing computational model 
accuracy, as well as the impact of experimental measurement uncertainty on the accuracy assessment. 

Russell [32] develops a new set of magnitude, phase, and comprehensive error measures to evaluate 
the differences between two functions or test and analytical data. The error factors are on the same 
relative scale and have physical interpretations.  

Geers [33] presents the metric for comparing calculated transient response history with its measured 
counterpart. The proposed measure assigns a single numerical value to the discrepancy between the two 
histories over a specified comparison period. Computational of the measure involves the integration in 
time of squares and products of the calculated and measured histories. Representative results are shown 
for both idealized and actual response histories. 

Validation metrics problems were developed also in works [34-41]. 
In the present paper the formulation of the validation metrics is proposed as follows [29,41]:  
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𝜗𝜗𝑚𝑚𝑚𝑚 = (𝑡𝑡2 − 𝑡𝑡1)−1 � 𝑠𝑠2

𝜔𝜔2

𝜔𝜔1

(𝑡𝑡)𝑑𝑑𝑡𝑡 
 

(20) 

𝜗𝜗𝑐𝑐𝑐𝑐 = (𝑡𝑡2 − 𝑡𝑡1)−1 � 𝑐𝑐2
𝜔𝜔2

𝜔𝜔1

(𝑡𝑡)𝑑𝑑𝑡𝑡 
 

(21) 

𝜗𝜗𝑚𝑚𝑐𝑐 = (𝑡𝑡2 − 𝑡𝑡1)−1 � 𝑠𝑠

𝜔𝜔2

𝜔𝜔1

(𝑡𝑡)𝑐𝑐(𝑡𝑡)𝑑𝑑𝑡𝑡 
 

(22) 

where  𝑠𝑠(𝑡𝑡)  is the measured history and 𝑐𝑐(𝑡𝑡) is the simulation history, 𝑡𝑡1 < 𝑡𝑡 <  𝑡𝑡2 is the time span of 
interest for the response history. The amplitude validation metric (AVM) is: 

𝑀𝑀𝑆𝑆𝑆𝑆 =  �
𝜗𝜗𝑐𝑐𝑐𝑐
𝜗𝜗𝑚𝑚𝑚𝑚

− 1 
 

(23) 

The AVM is insensitive to phase discrepancies and is based upon the area under the squared 
response history. The phase validation metric (PVM) is: 

𝑃𝑃 =  
1
𝜋𝜋

acos�
𝜗𝜗𝑚𝑚𝑐𝑐

�𝜗𝜗𝑚𝑚𝑚𝑚𝜗𝜗𝑐𝑐𝑐𝑐
� 

 
(24) 

PVM is insensitive to magnitude differences. The comprehensive validation metric is: 

𝐶𝐶𝑆𝑆𝑆𝑆 = �𝑀𝑀𝑆𝑆𝑆𝑆
2 + 𝑃𝑃2 

 
(25) 

In this paper, another approach proposed by Oberkampf, Trucano [27] is taken into the consideration: 

𝑉𝑉 = 1 −
1
𝐸𝐸
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(26) 

This type of metric has the following advantages [27]. First, it normalizes the difference between the 
computational results and the experimental data. Thus a relative error norm is computed. This 
normalization, however, is inappropriate when any of the 𝑠𝑠(𝑡𝑡)  are near zero. When the difference 
between the computational results and the experimental data is zero at all measurement locations, then the 
validation metric is unity, i.e., perfect agreement between the computational results and the experimental 
data. When the summation of the relative error becomes large, the validation metric approaches zero. 

In the article, the validation process consisted in determining the validation coefficients and checking 
whether these coefficients are smaller than the assumed level of 30% in full range of analysed domain 
[33]. Checks were carried out for different stiffness and tension values within the fixed time range. In the 
work, the verification process was carried out for different grid densities-spectral element’s length.  

 
4 Results from Measurements in Situ and Numerical Analysis 

Experiments were performed in situ, during the maintenance period of the transmission line. The 
conductor was aluminium conductor steel reinforced type (ACSR), and according to technical data sheet 
it had weight per unit length m = 0.974 kg/m and nominal diameter D = 21.7 mm. The span length of the 
conductor was 213 m. The elasticity module was E = 77 GPa, density ρ = 2700 kg/m3. 

Transmission line was located at height of 30 m above the ground, mounted to the steel towers. 
Conditions of the measurements was as follows: temperature of the air was 11 degrees of Celsius, measured 
wind speed during the measurement time was in the range of 0.0 to 10.5 m/s. Measurements of accelerations 
were performed in the mid span of 106.5 m Fig. 3. Wind speed was measured with the anemometer and 
vibrations with accelerometers manufactured by Bruel & Kjaer. Signals from the piezoelectric 



168                                                                                                                                                SV, 2019, vol.53, no.4 

accelerometers were read and recorded by Pulse acquisition data system from Bruel & Kjaer. Natural 
vibrations were measured. Records from the measurements of natural vibrations are presented in Fig. 4. 
 

 
                        (a) 

 
(b) 

Figure 3: Experiments in situ, (a) view of the overhead transmission line (b) accelerometers mounted to 
the transmission conductor 

 

 
                            (a) 

 
(b) 

 
           (c) 

Figure 4: Force signal, (a) impulse force signal, (b) full acceleration record of cable’s response (c) last 
part acceleration record of cable’s response 

Modal hammer was used for generation of impulse forces. For each case of natural and excited vibrations, 
the frequency band [0,50] was taken into consideration as shown in Tab. 1. 
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Table 1: Parameters of records for measurements in situ 
Excitation Frequency 

band [Hz] 
Time range [s], 

[t0, te] 
Sampling 

frequency, fs [Hz] 
Accelerometers 

Impulse force [0, 50] [0, 90] 512 Acc1 and Acc2 
Wind action [0, 50] [0, 90] 512 Acc1 and Acc2 

4.1 Natural Vibrations 
On the basis of the formulas presented in Eqs. (15-17), it is possible to obtain the Frequency 

Response Function (FRF) of the overhead transmission conductor. For the numerical tests, it is assumed a 
pinned-pinned boundary condition.  
In the beginning, in order to verify the proposed model, the 10 firsts resonance picks of the FRF are 
compared with the natural frequency analytical formulation (Eq. (2)) and with the results received from 
the measurements and numerical simulations. Once, the structure is excited with a unitary force we can 
expect that the resonance picks are close to the natural frequency of the system. Fig. 5 shows the FRF for 
experimental data and simulations measured at point L1 = 33 m from the node. For the purpose of the 
numerical simulation it was assumed the circular area of the conductor A = 108 mm2 and A = 223.7 mm2 
and tension force of T = 30 kN. Figs. 5(a)-5(b) shows the comparison of experiments and best fit 
simulation functions. The zoom image at 0 to 5 Hz frequency band to better visualization of the firsts 
resonance pick is shown on Fig. 5(b). Tab. 2 summarized the 10-first’s analytical natural frequency and 
resonance pick obtained with the SEM model and from measurements in situ.  

       (a) (b) 

 (c) (d) 
Figure 5: FRF measured in situ and from the spectral model, (a) FRF from experiment and simulation1 
for A = 223.7 mm2, tension force T = 30 kN, (b) zoom image in 0 to 5 Hsz frequency band for experiment 

0 5 10 15 20 25 30 35 40 45 50

Frequency [Hz]

10 -1

10 0

10 1

10 2

10 3

10 4

R
ec

ep
ta

nc
e 

[d
B

 m
/N

],n
at

ur
al

 v
ib

ra
tio

ns
 

  , , , , , , 

Measurement in situ

Spectral analysis

Zoom

1 2 3 4 5
Frequency [Hz]

10 0

10 1

10 2

10 3

10 4

R
ec

ep
ta

nc
e 

[d
B 

m
/N

],n
at

ur
al

 v
ib

ra
tio

ns
 

Measurement in situ

Spectral analysis

0.8

0.8 1.2

1.3

1.6

1.7

1.8

1.9

2.0

2.1

2.2

2.3

2.4

2.6

2.7

2.8

2.93.1

3.3
3.5

0 5 10 15 20 25 30 35 40 45 50

Frequency [Hz]

10 -1

10 0

10 1

10 2

10 3

10 4

10 5

R
ec

ep
ta

nc
e 

[d
B

 m
/N

]

Experiment

Simulation1

Simulation2

22 24 26 28 30 32 34 36

Frequency [Hz]

10 0

10 1

10 2

10 3

R
ec

ep
ta

nc
e 

[d
B

 m
/N

]

Experiment

Simulation1

Simulation2

  Experiment 

       Simulation1 

    Experiment 

   Simulation1 



170                                                                                                                                                SV, 2019, vol.53, no.4 

and simulation1 results, (c) comparison of experiment, simulation1 (A = 223.7 mm2) and simulation2 (A 
= 108 mm2), tension force T = 30 kN, (d) zoom image in 22 to 36 Hz frequency band for experiment, 
simulation1, simulation2 results 

Table 2: Comparison between 10 firsts analytical natural frequency with resonance picks obtained in the 
experiment and simulation1 (A = 223.7mm2, T = 30 kN) 

𝛚𝛚𝐧𝐧 (𝐇𝐇𝐇𝐇) 0.366 0.733 1.1 1.468 1.837 2.206 2.578 2.950 3.325 3.701 

Simulation1 0.8 1.3 1.6 1.8 2.1 2.3 2.6 2.8 3.1 3.3 

Experiment 0.8 1.2 1.7 1.9 2.0 2.4 2.7 2.9 - 3.5 
 
4.2 Wind Vibrations 
In the spectral analysis the wind force acting on the overhead transmission line is determined by the 
expression: 

𝐹𝐹 =
1
2
𝜌𝜌𝑉𝑉2𝐷𝐷𝐿𝐿𝐶𝐶 (27) 

where 𝜌𝜌 = 1.25 𝑘𝑘𝑘𝑘/𝑠𝑠3, 𝑉𝑉 is the wind speed, 𝐷𝐷  is the diameter of the transmission line, L is the length of 
the line, 𝐶𝐶  is the aerodynamic coefficient, equal to 2. The wind speed that most fit the response of 
overhead transmission line is shown on Fig. 6. The results of analysis in Fig. 7 present two curves 
received in spectral analysis and analysis is from measurements in situ. In the range of frequency (0,20) 
Hz, the amplitudes from spectral analysis are higher than from measurements in situ.  

 

 
Figure 6: Wind speed signal used for spectral analysis 
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               (a) 

 
(b) 

 
               (c) 

 
(d) 

Figure 7: FRF for experiment and simulation,  (a) simulation 1 for A = 223.7 mm2, tension force T = 30 
kN, simulations2 for A = 108 mm2, tension force T = 30 kN, (b) zoom image in 5 to 25 Hz frequency 
band, (c) zoom image in 30 to 55 Hz frequency band, (d) zoom image in 60 to 90 Hz frequency band 

For the analysis of natural vibrations, the use of spectral elements length L1 = 21.3 m results the 
amplitude validation metric AVM = 0.02801, for L1 = 53.25 m the AVM = 0,007723. Selected results of 
analyzes validation metrics are presented in Tab. 3 for different spectral element length and in Tab. 4 for 
different cable section area. The analysis shows the slight impact of changes of phase validation metric 
(PVM) along with the change in the division of the density of the spectral elements and changes in the 
cable cross-section.  

Table 3: Validation metrics for different spectral element length 

L1 , [m] 
Natural vibrations Wind vibrations 

MSG P CSG MSG P CSG 
21.30 0,0280 0,1609 0,1633 0,1301 0,1716 0,2153 
53.25 0,0077 0,1580 0,1582 0,0097 0,1682 0,1685 
71.00 0,0701 0,1651 0,1794 0,0025 0,1671 0,1671 

Table 4: Validation metrics for different cable section area 

A, [m2] 
Natural vibrations Wind vibrations 

MSG P CSG MSG P CSG 
223.70 0,0002 0,1435 0,1554 0,2115 0,0097 0,1682 
240.00 0,0002 0,0077 0,1580 0,1582 0,2335 0,1704 
264.45 0,0003 0,3436 0,1544 0,3767 0,4650 0,1684 
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Figs. 8 and 9 present the results of the validation metrics analysis according with formulas Eqs. (20)-
(26) described in Section 3 of this paper in the full range of time domain records, [t0, te] = [0, 90]. 

 
                             (a) 

 
(b) 

Figure 8: Validation metric: (a) as the function of the element division; (b) as the function of cable 
section area 

Fig. 9 presents the dependence of relative error and validation metric in formulation of Eq. (26). 

 
                 (a) 

 
(b) 

Figure 9: Validation metric as a function of the relative error for the wind and natural vibrations before 
fitting the functions: (a) full range; (b) zoom in the range of the 0.2 to 0.32  

Fig. 10 presents the sensitivity of hysteretic damping on changes of tension force and section area of 
the conductor. Hysteretic damping is expressed by the wave number described by the Eqs. (5)-(6). 

 

 
                     (a) 

 
(b) 

Figures 10: Hysteretic damping for the conductor: (a) change of tension force; (b) change of section area  
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5 Conclusions 
In the paper the vibrations of the power transmission line in the natural environment and comparison 

with the results obtained in the numerical analysis was performed. Experimental tests were carried out on 
the currently operating modern ACSR high voltage transmission line with the span of 213.0 m. The 
natural working conditions of the cable were determined by the action of wind in the range from 0.0 to 
10.5 m/s. The numerical model was made using the Spectral Element Method. Experimental data from 
measurements was used in the estimation process and frequency response functions were created and 
compared for experiment and simulation results.  

In the spectral model, for various parameters of stiffness, damping and tension force, the system 
response was checked and compared to the results of the vibration accelerations obtained in the situ 
measurement. The frequency analysis was carried out. The credibility of the model was assessed through 
a validation process carried out by comparing graphical plots of FRF functions and numerical values 
expressing differences in acceleration amplitude (MSG), phase angle differences (PSG) and differences in 
acceleration and phase angle total (CSG) values. Furthermore, particular attention was paid to the 
hysteretic damping analysis. Sensitivity of the wave number was performed for changing of the tension 
force and section area of the cable. 

The next aspect constituting the purpose of this article was to present the wide possibilities of 
modelling and simulation of slender conductors using the Spectral Element Method. The obtained results 
show very good accuracy in the range of both experimental measurements as well as simulations analysis. 
The paper emphasizes the ease with which the sensitivity of the cable and its response to changes in 
density of spectral mesh division, cable cross-section, tensile strength or material damping can be studied. 

In the paper, a very important issue of vibration of the actual transmission line was performed. In the 
literature, there are not too many studies on modern constructions of high-voltage transmission lines 
under real working conditions. Such research was carried out by the authors of this paper, taking into 
account the modern cross-section of the cable currently in use on the transmission line. It is worth noting 
that the presented results bring closer the producers an users of power transmission lines for the 
application of more durable cables than those currently used and more resistant to fatigue damage being 
the main cause of cable breakages and transmission infrastructure. 
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