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Abstract: The high precision population forecasting and spatial distribution modeling are 

very important for the theory and application of population sociology, city planning and 

Geo-Informatics. However, the two problems need to be solved for providing the high 

precision population information. One is how to improve the population forecasting 

precision of small area (e.g., street scale); another is how to improve the spatial resolution 

of urban population distribution model. To solve the two problems, some new methods are 

proposed in this contribution. (1) To improve the precision of small area population 

forecasting, a new method is developed based on the fade factor and the slide window. (2) 

To improve the spatial resolution of urban population distribution model, a new method is 

proposed based on the land classification, public facility information and the artificial 

intelligence technology. For validation of the proposed methods, the real population data of 

15 streets in Xicheng district, Beijing, China from 2010 to 2016, the remote sensing images 

and the public facility data are collected and used. A number of experiments are performed. 

The results show that the spatial resolution of proposed model reaches 30m*30m and the 

forecasting precision is better than 5% using the proposed method to forecast the 

population of 15 streets in Xicheng district in the next four years. 

 

Keywords: Population forecasting, spatial distribution, cellular automata, multi-agent 

system. 

1 Introduction 

Urban population forecasting and spatial distribution can provide important information 

to local governments, businesses and academics for various purposes. The inaccurate 

urban population information will lead to the failure of city planning, economic 

investment and public resource allocation. In contrast, the high precision population 

information can improve the urban sustainable development and the utilization efficiency 

of public resources. Therefore, many scholars have investigated different methods to 

urban population forecasting and spatial distribution [Clark (1951); Wu and Murray 

(2005); Wilson (2015); Zou, Zhang and Wang (2018)].  
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In general, there are two kinds of population forecasting models. One is the demographic 

model which is known as the “golden models”, such as double-region model, multi-

region model, queue group element model, Hamilton-Perry model [Isserman (1993); 

Smith and Tayman (2003); Renski and Strate (2013)]. The demographic model can 

obtain the high precise results of the large area population forecasting (such as a country, 

a province, a state), where Mean Absolute Percentage Error (MAPE) will be less than 6% 

[Wilson (2016)]. However, it is not suitable for the small area population forecasting 

since the small area is lack of the necessary population statistical information, such as 

birth rate, death rate, migration rate, etc. Another is the pure mathematic model, such as 

linear model, exponential model, mixed model, gray model, autoregressive model 

[Armstrong (2001); Baker, Ruan, Alcantara et al. (2008); Deng (2010)]. These models 

are often used to forecast population of small areas, such as a district, a block, a street 

[Chi and Voss (2011)]. However, the population forecasting precisions of these pure 

mathematic models are poor, where MAPE is about 10% [Zou, Zhang and Wang (2018)]. 

Tab. 1 shows the merits and demerits of demographic model and pure mathematic model. 

Table 1: Comparison between demographic model and pure mathematic model 

Model Merits Demerits Applicability 

demographic model 

high precision, 

providing the 

population structure 

information 

a long historical time 

series data and 

population structure 

data are required 

the large area 

population 

forecasting 

pure mathematic 

model 

low requirements 

for the basic data 

and easy to use 

low precision, 

lacking of population 

structure information 

the small area 

population 

forecasting 

From Tab. 1, it is known that neither the demographic model nor the pure mathematic model 

can provide the spatial distribution information of urban population. However, it is very 

significant for government, business and individual to make a practical policy, planning and 

investment that the high precision spatial distribution information of urban population. 

Therefore, it is attracting more and more research interests of the urban population spatial 

distribution modeling [Vidyattama and Tanton (2010)]. Currently, there are three kinds of 

urban population spatial models: a) population density model [Clark (1951); Tanner (1961); 

Smeed (1961); Anderson (1985)]; b) spatial interpolation model [Tober (1979); Lam (1983)]; 

c) geographical factor model [Harvey (2002); Tian, Chen, Yue et al. (2004); Xu, Mei and 

Han (1994); Zhuo, Chen, Shi et al. (2005)]. Tab. 2 summarizes the characters and 

applicability of these urban population spatial distribution models. 

Table 2: Characters of current urban population spatial distribution models 

Model Merits Demerits Principle 

population density easy to use 
low spatial 

resolutions 

describe the entire 

distribution of urban 

population based on a 

simple function model 

spatial interpolation be suitable for the model describe the urban 
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spatial overlay 

analysis (e.g., 

land grid) 

precision is 

closely related to 

the grid size 

population spatial 

distribution based on a 

regular grid model 

geographical factor 

high data 

processing 

efficiency 

accuracy relation 

between 

geographical 

factor and 

population 

density is required 

describe the urban 

population spatial 

distribution based on 

the relation between 

geographical factor 

and population density 

From Tab. 2, the population density model is easy to use, but its spatial resolution is low. 

The spatial interpolation model can reach a high spatial resolution if the mesh is 

sufficiently dense that the numerical approximation is an accurate one, but the additional 

computational burden may not be tolerable. The geographical factor can improve the data 

processing efficiency, but it is very difficult to accuracy establish the function relation 

between geographical factor and population density. Therefore, it is necessary to develop 

a high spatial resolution and easy-to-use urban population distribution model. 

In this study, the methods of high precision small area population forecasting and high 

spatial resolution urban population distribution modeling are investigated. To improve 

the precision of small area population forecasting, a new method is developed based on 

the fade factor and the slide window; and to improve the spatial resolution of urban 

population distribution model, a new method is proposed based on the land classification, 

city public facility information and the artificial intelligence technology. For validation of 

the proposed methods, the real population data of 15 streets in Xicheng district, Beijing, 

China from 2010 to 2016, the remote sensing images and the public facility data are 

collected and used. The results show that the spatial resolution of proposed model reaches 

30 m*30 m and the forecasting precision of each street population is better than 5%. In 

the following, Section 2 introduces the study area, data and methods in this study; Section 

3 presents the experimental results and analysis; Section 4 summarizes the main points 

and contributions of this paper. 

2 Study area, data and methods 

2.1 Study area 

The study area is the Xicheng district, Beijing city, China. Beijing is the capital of the 

People's Republic of China. There are 16 districts in Beijing city and the Xicheng district 

is the center of Beijing, where the state council of China and the other important 

administrative organizations of China are located in Xicheng district. Therefore, the 

population density of Xicheng district is the largest in the 16 districts of Beijing, which 

reaches 28,793 people per km2 in 2016, and the registered population is counted and the 

unregistered population is not included. Actually, the number of unregistered population 

is very large in Xicheng district. Therefore, the real population density of Xicheng district 

is larger than the above value. It is noted that the administrative area of Xicheng district 

was adjusted in 2010, where the Xuanwu district was merged into the Xicheng district. 

Therefore, the study area of this paper means the merged Xicheng district. The Fig. 1 

shows the population spatial distribution of 16 districts of Beijing city and 15 streets of 
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Xicheng district in 2016. 

 

Figure 1: Population spatial distribution of 16 districts of Beijing city (a) and that of 15 

streets of Xicheng district (b) in 2016 

It is known that the population distribution of Beijing like a group of concentric rings 

from the Fig. 1(a), where the population densities of central areas (I, II) are the largest, 

and that of outer suburbs (XII, XIII, XIV, XV, XVI) are the smallest. This kind of 

population spatial distribution was described by Clark, see Clark [Clark (1951)]. 

However, it is only suitable for modeling the population distribution of large area (e.g., 

Beijing city). The population spatial distribution of small area (e.g., Xicheng district) is 

different in the Fig. 1(b), which is effected by various kinds of factors, such as land type, 

public facility, house price, etc. Therefore, the high spatial resolution model should be 

developed to describe the real distribution of urban population. 

2.2 Data 

In this study, there are three kinds of data are collected and used: a) the population data of 

15 streets in Xicheng district, Beijing from 2010 to 2016; b) the remote sensing images of 

Xicheng district, Beijing from Landsat in 2016; c) the spatial distribution of public 

facilities of Xicheng district, Beijing from 2010 to 2016. The special information of three 

kinds of data is listed in the Tab. 3. 

Table 3: Study data type, content and source 

 Type Content Time Source 

a Population  
population of 15 streets in 

Xicheng district 

2010-

2016 

Beijing Municipal Bureau of 

Statistics 

b Land Type 

30 m*30 m remote sensing 

image of Xicheng district 

from Landsat 

2016 

Computer Network 

Information Center, Chinese 

Academy of Sciences 
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c 
Public 

Facility 

digital map of subway 

station, school, hospital, shop 

center in Xicheng district 

2010-

2016 
www.openstreetmap.org 

2.3 Methods 

2.3.1 Population forecasting method 

The purpose of this study is that constructing a high precision and high resolution 

population spatial distribution model of Xicheng district, Beijing city, China. Therefore, 

the total number of populations of each street should be obtained in different year firstly. 

The population data of 15 streets in 2010 and 2012 is taken as the basic data, and the 

population of 15 streets in the next 4 years is forecasted, respectively. Six forecasting 

models are used and the population data of 15 streets (2013-2016) from Beijing 

Municipal Bureau of Statistics are taken as the true values to validate the forecasting 

precision of each model. The forecasting models include linear model, improved index 

model [Baker, Ruan, Alcantara et al. (2008)], grey model [Deng (2010)], sharing model 

of the population scale constant, constant model of the population growth rate difference 

[Davis (1995)] and sharing model of population growth variable [Wilson (2015)], of 

which the first three models are pure mathematical model, and the latter three models are 

the forecasting models with total population constraint information. And a new method 

based on the fade fact and slide window is adopted to improve the precisions of these 

models for small-area population forecasting [Zou, Zhang and Wang (2018)]. The 

concrete formula is as follows: 

① Linear model (LIN): 

( 1) ( ) (1 )i i iP t P t r+ =  +                                                                                                     (1) 

2

( ) ( 1)1

1 ( 1)

t
i i

i

j i

P j P j
r

t P j=

− −
=

− −
                                                                                              (2) 

Where, Pi(t), Pi(t+1) and ri are the population and the average annual growth rate of 

population of the ith street in the tth and (t+1)th year respectively. 

② Improved exponential model (MEX): 

[ (1 ( )/ ]

[ (1 / ( )]

( 1) ( ) , 0

( 1) ( ) , 0

i i i

i i i

r P t K

i i i

r K P t

i i i

P t P t e r

P t P t e r

−

−

 + = 


+ = 
                                                                               (3) 

When ri≥0, Ki is five times the population of the ith street in the tth year; when ri<0, Ki is 

1/5 of the population of the ith street in the tth year. 

③ Grey model (GM) 

(2) (2)( 1) ( 1) ( )i i iP t P t P t+ = + −                                                                                            (4) 

(2) (1) [ ( 1) / ]( 1) [ (1) ] a t b a

i i

b
P t P e

a

− − ++ = −                                                                                  (5) 
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(1)

1

( ) ( )
t

i i

j

P t P j
=

=                                                                                                               (6) 

Where a and b are the calculation coefficients for the model whose formula is as follows: 

  1( ) ( )
T Ta b B B BL−=                                                                                                    (7) 

(1) (1) (1) (1) (1) (1)(1) (2) (2) (3) ( 1) ( )

2 2 2

1 1 1

T

i i i i i iP P P P P t P t

B

 + + − +
− − − =
 
  

                          (8) 

 (2) (3) ( )
T

i i iL P P P t=                                                                                            (9) 

④ Sharing model of the population scale constant (CSP) 

( 1) ( 1)i T iP t P t S+ = +                                                                                                          (10) 

1

( )1

( )

t
i

i

j T

P j
S

t P j=

=                                                                                                                   (11) 

Where, Si is the average scale of the population of the ith street accounting for the total 

population of the whole district in the past t years. 

⑤ Constant model of the population growth rate difference (CGD): 

( ( , 1) )
( 1) ( ) T ir t t grd

i iP t P t e
+ +

+ =                                                                                                 (12) 

1

1
[ ( ) ( )]

t

i i T

j

grd r j r j
t =

= −                                                                                                   (13) 

Where, rT(t, t+1) is the annual growth rate of the population of the whole district in the 

(t+1)th year, and grdi is the average of the difference between the population growth rate 

of the ith street and that of the whole district.  

⑥ Sharing model of population growth variable (VSG): 

( 1) ( ) ( ( 1) ( )) ( 1), ( 1) ( ) 0

( 1) ( ) ( ( 1) ( )) ( 1), ( 1) ( ) 0

i i i i i T T

i i i i i T T

P t P t P t P t PF t P t P t

P t P t P t P t NF t P t P t

 + = + + −  + + − 


+ = + + −  + + − 
                    (14) 

Where, ( 1)iP t +  is the population of the ith street in the (t+1)th year predicted using linear 

model and exponential mixed model; PFi(t+1)
 

and NFi(t+1) are the adjustment 

coefficient for the increased population of the ith street in the (t+1)th year when the 

increased population of the whole district in the (t+1)th year is positive and negative 

respectively. The formula is as follows: 
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            (15) 

Where, m is the number of street in the district. 

⑦ The method based on the fade factor and slide window: 

To weaken the influence of historical information and strengthen the role of new 

information, a new method based on the fade factor and slide window technology is 

proposed [Zou, Zhang and Wang (2018)]. The specific implementation steps of the 

method are as follows. 

The calculation formula of LIN and MEX is consistent with (1) and (3), but the fading 

factor and sliding time window are introduced while calculating the average annual 

population growth rate. So (2) is adapted as follows: 

2

( ) ( 1)1
( ) ( )

1 ( 1)

t w
i i

i

j w i

P j P j
r w f j

t P j

+

= +

− −
=

− −
                                                                          (16) 
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t

t j w

f j j w

f j a a j w

 −

−

 = − = +


= −  +
                                                                                  (17) 

Where, w is the number of times of window movement; f(j) is the fading factor; α is the 

weight coefficient. (16) and (17) make use of the parameter w to keep the dynamic update 

of ri. Due to the introduction of f(j) and α, the weight of the historical data is adjusted 

constantly, which will further improve the timeliness of the parameter ri. 

The calculation formula of GM is basically the same as (4)-(9), but Pi
(1)(t)

 
is constantly 

updated using moving window technology, and then matrix B and matrix L are updated. 

(7) is substituted into weight matrix W, and then the fading factor f(j) are introduced, the 

specific formula of which is as follows: 

(1)

1

( ) ( )
t w

i i

j w

P t w P j
+

= +

+ =                                                                                                     (18) 

  1( ) ( )
T Ta b B WB BWL−=                                                                                              (19) 
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Where, the calculation formula of f(j) is the same as (17) in which t is the dimension of 

matrix W plus 1. After the introduction of the fading factor and sliding time window, GM 

becomes a weighted progressive model of equal dimension essentially. 

CSP and CGD are calculated in the same way as (10)-(13), and the fading factor and 

sliding time window are also introduced to them. So (11) and (13) are adapted as follows: 
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Where, the calculation formula of f(j) is the same as (17), and the calculation formula of 

VSG is the same as (14) and (15). However, (16) and (17) are used in the calculation of 

the average annual population growth rate. Thus, the method of small-area population 

forecasting based on the fading factor and sliding time window is actually to add new 

predicted value via moving window method, keep updating parameters of the model, and 

meanwhile weight the modeling data using the fading factor. This method can not only 

improve the timeliness of model parameters, but also increase the flexibility of the 

prediction model, thus better adapting to the rapid and dynamic change characteristics of 

unstable time series data. 

2.3.2 Population distribution based on land-use type 

The total number of population in each street can be obtained by the above forecasting 

method. However, the population of each street is not distributed evenly on the whole street. 

For example, it is impossible for people to live on a traffic/green/water land. The people 

just live on the construction land [Tayman (1996); Ji, Wang, Zhuang et al. (2014)]. 

Therefore, the land use type of each street should be accurately obtained. To solve this 

problem, the 30 m*30 m remote sensing image of Xicheng district from Landsat in 2016 is 

used and ENVI software is used for image data preprocessing and land-use classification. 

The special method of remote sensing image data processing is described as follows. 

Firstly, the remote sensing image data from Landsat in 2016 is preprocessing, including 

radiative correction, atmospheric correction, geometric correction, contrast stretching, etc. 

Secondly, the remote sensing image is clipped according to the administrative boundaries 

of Xicheng district. Thirdly, the land of Xicheng district is classified into construction 

land, green land, water land, traffic land by the supervised classification method. Fourthly, 

the image of construction land is visual interpreted furtherly for ensuring the precision of 
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construction land classification. Lastly, the construction land is vectorized for the 

subsequent spatial analysis. 

2.3.3 Population distribution based on public facility 

The population of each street is distributed on the construction land based on the result of 

land-use classification. However, the population on each piece of construction land is not 

completely equal. The population density of construction land which has a good public 

facility condition is larger than that of construction land which has a poor public facility 

condition. Therefore, the spatial locations of public facilities (subway station, school, 

hospital) in Xicheng district are obtained by the digital map from the OpenStreetMap. 

Then these public facilities are placed on the remote sensing image. It is noted that the 

coordinate systems of the remote sensing image and the digital map should be kept 

consistent. Furthermore, it becomes a key problem how to simulate the spatial 

distribution of population based on the spatial distribution of public facility. To solve this 

problem, a new method of population spatial distribution modeling is proposed based on 

the cellular automata (CA) and multi-agent system (MAS). The implement steps are 

described as follows. 

Firstly, the all construction lands of Xicheng district are divided to 30 m*30 m grids and 

each grid is taken as a cellular automata. Secondly, three character values are assigned to 

each CA, including traffic, school and hospital. The calculation formula of character 

value is as follows. 

1
( )

( )
=i

ij

V k
d k

, ( )1,...3 1,... 1,...= = =k i n j m                                                              (23) 

Where Vi(k) means the kth character value of ith CA. And k is type of character value 

(1=traffic, 2=school, 3=hospital). The dij(k) is the Euclidean distance between the ith CA 

and jth public facility and the jth public facility is the nearest one to the ith CA in m 

facilities of kth type of public facility. n notes the number of CA and m is the number of 

the kth type of public facility. 

Thirdly, the integrated score of each CA is computed by the Eq. (24). 

3

1

( ) ( )
=

=i i

k

T V k P k ,  ( )1, 2,3=k                                                                                         (24) 

Where Ti is the integrated score of the ith CA; P(k) is the power of the kth type of public 

facility. And the P(k) can be obtained by the adjustment method based on at least three 

year of historical population data in each street. 

Fourthly, the population of each street is divided equally to each CA. Then one agent 

represents one person. And average score per agent (ASPA) of each CA is calculated by 

the Eq. (25). 

= i
i

i

T
T

P
                                                                                                                              (25) 
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Where Pi is the number of population of the ith CA. If the average score per agent is high, 

it means that the public facility is rich and the number of population is small on this CA. 

In contrast, if the average score per agent is low, it notes that the public facility is poor 

and the number of population is large on this CA. 

Fifthly, the agents live on the low ASPA of CA move to the high ASPA of CA. Then the 

ASPA of each CA is calculated again and it will be stopped until the differences between 

the new ASPA and old ASPA of all CA are less than one threshold. It means that the 

balance between the public resource and the number of population has been realized on 

all CA. The Fig. 2 is the flow chart of population spatial distribution modeling based on 

the CA and MAS technology. 

Start
30m*30m 

Grid (CA)

1
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 character 

value of each CA

Integrated score 

of each CA

2
nd

 character 

value of each CA

3
rd

 character 

value of each CA

Average score per 

agent of each CA 

(ASPA, old)

Agent move from low 

ASPA to high ASPA 

|ASPAnew-ASPAold| < 

threshold
End

Yes Average score per 

agent of each CA 

(ASPA, new)

No
 

Figure 2: Process of population spatial distribution modeling based on the CA and MAS 

3 Experimental results and analysis 

3.1 Population forecasting experiment 

To validate the proposed method in this study, the data of introduced in the Section 2.2 

and the methods of introduced in the Section 2.3 are used. In the population forecasting 

experiment, two experiment schemes are designed and performed. In scheme 1, the 

population data of 15 streets in Xicheng district from 2010 to 2012 and LIN, MEX, GM, 

CSP, CGD, VSG models are used to forecast the population of each street in the next 4 

years. In scheme 2, the basic data and models are the same as those of scheme 1, but the 

fading factor and sliding time window are introduced in the forecasting models. In our 

experiment, the weight coefficient α of the fading factor is set as 0.5 and the length of 

sliding time window is set to be 3 years (basic data length). 

The Fig. 3 is the population forecasting precision of 15 streets of Xicheng district in the 

next 4 years using scheme 1 and scheme 2. The Mean Absolute Percentage Error (MAPE) 

is taken as the index of precision evaluation and the MAPE is calculated by (26). The Tab. 

2 lists the forecasting precision of each model and the average forecasting precision (AVE) 

of each scheme, as well as the improvement of the forecasting precision (IMP) of scheme 

2 compared with scheme 1. The calculation formula of AVE and IMP are as follows. 
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Where, MAPEi represents the forecasting precision of the ith model and m is the number 

of forecasting models. 
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a
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−
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Where, AVEa and AVEb represent the average forecasting models of the ath and the bth 

experimental scheme. 

 

Figure 3: Precisions comparison of using scheme 1 and scheme 2 respectively to forecast 

the population of 15 streets of Xicheng district, Beijing in the next four year 

Table 4: Forecasting precision and improvement using scheme 1 and scheme 2 Unit: % 

Scheme LIN MEX GM CSP CGD VSG AVE IMP 

1 102.03 67.93 26.68 11.68 12.75 6.32 37.90 
 

2 59.12 33.15 14.23 5.96 4.81 3.51 20.13 46.88 

From the Tab. 4 and Fig. 3, it can be known that (a) the forecasting precisions of the 

latter three population forecasting models (CSP, CGD and VSG) with total population 

constraint information are higher than those of the first three pure mathematical models 

(LIN, MEX and GM), among which VSG has the highest forecasting precision (6.32%); 

(b) the forecasting precision of all the six models increase significantly after using the 

fading factor and sliding time window technology. Compared with the scheme 1, the 

forecasting precision of scheme 2 is improved by 46.88%. Among these models, the 

forecasting precision of the optimal model VSG reaches 3.51%. 
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3.2 Population spatial distribution experiment based on land-use type 

To improve the spatial resolution of urban population distribution modeling, the land-use 

type of Xicheng district is classified by ENVI software since the people just live on the 

construction land. The results of 2016 population forecasting from the VSG of scheme 2 

are taken as the basic data. The Fig. 4(a) shows the results of land classification of 

Xicheng district and the Fig. 4(b) demonstrates the results of the population spatial 

distribution based on the land-use type. 

 

Figure 4: Results of land-use type of Xicheng district (a) and the population spatial 

distribution based on the land-use type (b) 

From the Fig. 4(a), it is can be known that the area of construction land is the largest 

because Xicheng district is in the center of Beijing city. The area of other unclassified land 

is the smallest, which means there is little undeveloped land in Xicheng district. The Fig. 

4(b) provides a higher spatial resolution of Xicheng district population distribution than that 

provides by the Fig. 1(b). And it can be found that the population density of Fig. 4(b) is 

larger than that of Fig. 1(b), because the population is not allocated on all types of land but 

on the construction land. The population density of Dashanlan Street (K) is the largest in 

the Fig. 1(b). However, the population density of Yuetan Street (E) becomes the largest in 

the Fig. 4(b). The reason is that the area of un-construction land of Yuetan Street is larger 

than that of Dashanlan Street (see the Fig. 5). Therefore, it is proved that the land-use 

classification is very important to model the population spatial distribution accurately. 
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Figure 5: Comparison of population spatial distribution of Yuetan Street and Dashanlan 

Street based on the results of land classification 

3.3 Population spatial distribution experiment based on public facility 

Although the spatial resolution of population distribution is improved by the land 

classification, the spatial distribution of urban population is severely affected by the 

public facilities distribution [Voss (2006)]. Therefore, a new method is developed to 

simulate the effect of public facility on the spatial distribution of urban population, which 

is described in Section 2.3.3. The Fig. 6(a) shows the spatial distribution of three kinds of 

public facilities (subway station, school and hospital) of Xicheng district in 2016. To 

simplify the data processing, only the subway station, the key schools and hospitals are 

considered. The Fig. 6(b) is the population spatial distribution of Xicheng district based 

on the above public facilities, using the CA and MAS technologies. 

 

Figure 6: Public facility spatial distribution (a) and population spatial distribution based 

on the CA and MAS (b) 
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From the Fig. 6, three conclusions can be drawn: (1) the spatial resolution of population 

distribution can be improved significantly if the effect of public facility is considered. In 

the same construction land, the population is not distributed evenly, but is strongly 

affected by the spatial distribution of public facilities; (2) the population aggregation of 

the Baizhifang Street (M) is very obvious, although its population is not too large. 

However, it leads to the highly concentrated population because the rare public facilities; 

(3) the subway station shows the strongest attraction for the population in the three kinds 

of public facilities. It notes the traffic condition is a very important influence factor for 

resident decision of where they live. Therefore, it indicates that the government can guide 

urban population realize the even distribution by the reasonable planning and 

construction of city public facilities. 

4 Conclusions 

In this study, two key problems of urban population forecasting and modeling are 

investigated. One is that the population forecasting of small area (street scale) and 

another is that high spatial resolution modeling of urban population spatial distribution. 

To improve the precision of small area population forecasting, a method is proposed 

based on the fade factor and the slide window. To improve the resolution of population 

spatial distribution model, a method is developed based on the artificial intelligence 

technology. For validation of the proposed methods, the population data, the remote 

sensing images and public facility distribution data of Xicheng district, Beijing, China are 

used and a number of experiments are performed. Some conclusions are listed as follows. 

Compared with the tradition six models (LIN, MEX, GM, CSP, CGD, and VSG), the 

average forecasting precision can be improved by 46.88% using the proposed method to 

forecast the population of 15 streets of Xicheng district in the next four years. The VSG 

model is the best and its forecasting precision (MAPE) reaches 3.51%. The spatial 

resolution of population can be improved significantly using the information of land 

classification and public facility distribution. And the subway station has the more effect 

on the urban resident spatial distribution than the hospital and the school. However, more 

influence factors of urban population spatial distribution should be investigated and the 

longer time series of population data and public facility distribution data should be used 

to determine the power (P(k)) of each type of public facility. In addition, the population 

data of special resident area should be collected for validating the precision of proposed 

population spatial distribution model in the future study. 
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