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An IB Method for Non-Newtonian-Fluid Flexible-Structure
Interactions in Three-Dimensions

Luoding Zhu'-*

Abstract: Problems involving fluid flexible-structure interactions (FFSI) are ubiquitous in
engineering and sciences. Peskin’s immersed boundary (IB) method is the first framework
for modeling and simulation of such problems. This paper addresses a three-dimensional
extension of the IB framework for non-Newtonian fluids which include power-law fluid,
Oldroyd-B fluid, and FENE-P fluid. The motion of the non-Newtonian fluids are modelled
by the lattice Boltzmann equations (D3Q19 model). The differential constitutive equations
of Oldroyd-B and FENE-P fluids are solved by the D3Q7 model. Numerical results indicate
that the new method is first-order accurate and conditionally stable. To show the capability
of the new method, it is tested on three FFSI toy problems: a power-law fluid past a flexible
sheet fixed at its midline, a flexible sheet being flapped periodically at its midline in an
Oldroyd-B fluid, and a flexible sheet being rotated at one edge in a FENE-P fluid.

Keywords: Fluid flexible-structure interaction, immersed boundary method, lattice
Boltzmann, power-law, Oldroyd-B, FENE-P.

1 Introduction

Phenomena of fluid flexible-structure interactions (FFSI) are ubiquitous in various fields
of engineering and sciences. For instances, clothes moving in a washing machine,
booms floating in ocean preventing oil pollution, blood flowing in deformable blood
vessels, to name just a few. Due to complexity of such problems, mathematical modeling
and computer simulation of FFSI problems are challenging. The first methodology for
modeling and simulation of FFSI problems is probably the immersed boundary (IB)
method introduced by Peskin [Peskin (1972, 1973)]. Since the birth of the IB method,
numerous methods for FFSI problems are developped. These include immersed boundary
method [laccarino and Verzicco (2003); Mittal and Iaccarino (2005)], Arbitrary Lagrangian
Eulerian (ALE) [Hughes, Liu and Zimmermann (1981); Donea, Giuliani and Halleux
(1982); Yang, Sun, Wang et al. (2016)], the lattice Boltzmann [Lallemand and Luo (2003)],
fictitious domain [Glowinski, Pan and Periaux (1994a,b)], front tracking [Glimm, Grove,
Li et al. (1998)], immersed interface [Leveque and Li (1994); LeVeque and Li (1997); Li
and Lai (2001)], blob-projection [Cortez (2000)], phase field [Sun, Xu and Zhang (2014);
Wick (2016); Zheng and Karniadakis (2016); Mokbel, Abels and Aland (2018)], immersed
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finite element [Zhang, Gerstenberger, Wang et al. (2004); Liu, Tang et al. (2007)], material
points [Sulsky, Chen and Schreyer (1994); Sulsky, Zhou and Schreyer (1995)], immersed
continuum [Wang and Liu (2004); Wang (2006)], the level set [Hou, Li, Osher et al. (1997);
Xu, Li, Lowengrub et al. (2006); Cottet and Maitre (2006)], the gas-kinetic [Jin and Xu
(2008)], and monolithic approach [Hiibner, Walhorn and Dinkler (2004); Hron and Turek
(2006); Barker and Cai (2010)].

Because of complexity and diversity of FFSI problems and limitations of mathematics
and computer technology, the immersed boundary method has had many different variants
designed specifically for FFSI problems with various peculiar features. Examples include
the original versions [Peskin (1972, 1977); Peskin and McQueen (1996)], the compressible
fluid version [Wang, Currao, Han et al. (2017)], the fluid-solute version [Lee, Griffith
and Peskin (2010)], the rigid body version [Kim and Peskin (2016)], the thick rod
version [Lim, Ferent, Wang et al. (2008)], the volume-conservation version [Peskin and
Printz (1993); Rosar and Peskin (2001)], the poroelastic version [Strychalski, Copos, Lewis
et al. (2015)], the adaptive mesh-refinement [Roma, Peskin and Berger (1999); Griffith,
Hornung, McQueen et al. (2007)], the porous media [Stockie (2009)], the formally ond.
order [Lai and Peskin (2000); Griffith and Peskin (2005)], the multigrid [Zhu and Peskin
(2002); Zhu and Chin (2008)], the penalty [Kim and Peskin (2007)], the finite element
[Boffi and Gastaldi (2003); Boffi, Gastaldi, Heltai et al. (2008); Griffith and Luo (2012);
Hua, Zhu and Lu (2014)], the stochastic [Atzberger, Kramer and Peskin (2007); Atzberger
and Kramer (2008)], the lattice-Boltzmann [Feng and Michaelides (2004, 2005); Zhu, He,
Wang et al. (2011a); Tian, Luo, Zhu et al. (2011); Cheng and Zhang (2010); Wu and Shu
(2009); Shu, Liu and Chew (2007); Niu, Shu, Chew et al. (2006); Wu, Shu and Zhang
(2010); Cheng, Zhu and Zhang (2014); Liu, Peng, Liang et al. (2012); Zhang, Cheng, Zhu
et al. (2016)], the variable viscosity version [Fai, Griffith, Mori et al. (2013, 2014)], the
vortex-method version [McCracken and Peskin (1980)], the implicit versions [Fauci and
Fogelson (1993); Taira and Colonius (2007); Mori and Peskin (2008); Hou and Shi (2008);
Newren, Fogelson, Guy et al. (2008); Hao and Zhu (2010, 2011)],

Newtonian fluids are assumed for most of the existing versions of the IB method. However,
FFSI problems may involve non-Newtonian fluids. For instance, cytoplasm interacting
with cytoskeleton in a living cell; blood interacting with red/white cells in a blood vessel;
and poroelastic tissue interacting with a cancer cell during metastasis. Many special
properties are displayed by non-Newtonian fluids including normal stress differences and
shear thinning/thickening. In contrast to Newtonian fluids which may be described by
a universal strain-stress equation; there exists no universal constitutive equation for all
non-Newtonian fluids. Different non-Newtonian fluids have to be described by different
constitutive equations (algebraic or differential) characterizing history effects and strain-
stress relationships.

Note that the existing non-Newtonian immersed boundary methods [Chrispell, Cortez,
Khismatullin et al. (2011); Chrispell, Fauci and Shelley (2013); Tian (2016); Zhu, Yu, Liu
et al. (2017)] are for power-law or Oldroyd-B fluids in two-dimensions except [Zhu, Yu,
Liu et al. (2017)] which is three-dimensional for power-law fluids. Tian et al. [Ma, Wang,



An IB Method for Non-Newtonian-Fluid Flexible-Structure Interactions 127

John et al. (2018)] are developping an immersed-boundary lattice-Boltzmann method for
viscoelastic fluids including Oldroyd-B and FENE-CR fluids. In their work the motion
equations of the solid are solved for by finite difference or finite element methods. In this
paper we discuss our recent development of a 3D IB methods for three non-Newtonian
fluids: power-law, Oldrod-B [Oldroyd (1950)], and FENE [Peterlin (1961)]. These models
can describe many non-Newtonian fluids encountered in real-world problems including
blood and polymeric fluids. Some preliminary results was reported in a short letter [Zhu
(2018)]. Details and more tests of the new method, including the integration of the three
non-Newtonian models are presented in the current paper.

In our new method, the lattice Boltzmann equations, the D3Q19 model [Qian (1990);
SY and GD (1998)], are used to model the fluid flow. The power-law, the Oldroyd-B
model, and the FENE-P model are used to model constitutive equations for various non-
Newtonian fluids. The formal one (power-law) is incorporated into the lattice Boltzmann
D3Q19 model by an algebraic approach; the latter two are numerically solved by the
lattice Boltzmann D3Q7 model [Malaspinas, Fiétier and Deville (2010)]. The deformable
structure is modelled by elastic fibers which can be stretched, compressed, and bent. The
fluid-structure-interaction is modelled by the Dirac delta function, as in Peskin’s original
immersed boundary method. Note that in our method, the three non-Newtonian models
are integrated seamlessly via a model parameter. Selection of a specific model is done by
setting a specific numerical value to the parameter. This is a unique feature of our hybrid
method thanks to the advantages of using lattice Boltzmann approach for modeling both
fluid motions and the corresponding constitutive equations.

To examine the new method and demonstrate its capability, we consider three FFSI toy
problems- a power-law fluid flow passes a deformable sheet tethered at the middleline, a
flexible rectangular sheet is flapped sinusoidally at its midline in a stationary Oldroyd-B
fluid, and a flexible rectangular sheet is rotated at one edge in a stationary FENE-P fluid.

The remaining article is as follows. Section 2 gives the complete mathematical formulation
of the IB method for non-Newtonian fluids. Section 3 discusses details of the numerical
methods for the mathematical formulation. Section 4 addresses the verification and
validation of the new method and its implementation. Section 5 reports some main
simulation results for each of the three test problems. Section 6 concludes the paper with a
summary.

2 Mathematical formulation

The immersed boundary formulation, a nonlinear system of differential-integral equations,
describing the motion of a generic flexible structure in a non-Newtonian fluid (power-law,
Oldroyd-B or FENE-P) may be written as follows. The equations are listed first and then
followed by explanation.

0
p <altl +u- Vu) =—-Vp+V. -2nD)+ V- -II+ fy(x,t) + bs(x,t), (1)
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Egs. (1) and (2) are the classic Navier-Stokes equations for a viscous incompressible fluid
where u denotes the fluid velocity, p denotes the density, p the pressure. The symbol
fiv denotes the Eulerian force applied by the immersed structure to the fluid, by denotes
other external forces exerted on the fluid, for example, the gravity. The letter D = (Vu +

u”") /2 denotes the strain rate tensor, 7 the fluid dynamic viscosity, and IT the viscoelastic
stress tensor. Note that the two equations are valid for both Newtonian and non-Newtonian
fluids. For Newtonian fluids, 7 is constant and I is zero. For non-Newtonian fluids obeying
power-law, 7 is given by Eq. (3) where * is the shear rate, D;; is the ijt" component of
strain rate tensor, constants 79 and n are model parameters describing the properties of
the non-Newtonian fluid. Note that when n = 1 the fluid becomes Newtonian. For non-
Newtonian fluids such as polymeric fluids, the viscoelastic stress II may be computed from
the conformation tensor C (Eq. (4)), where k,, and 1, are the relaxation time and dynamical
viscosity of the polymer, respectively. The polymer conformation tensor C is governed by
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Eq. 4), i.e., the FENE-P model [Peterlin (1961)]. The variables a and b are given by Eq.
(5) where 7, is a model parameter related to the maximum length of polymer molecules
which is permitted and ¢r(C) is the trace of the conformation tensor C. Note that variable a
is a nonlinear function of the conformation tensor C and the FENE-P model is a nonlinear
system of hyperbolic partial differential equations. When ¢ = b = 1, FENE-P model
reduces to the popular linear Oldroyd-B model [Oldroyd (1950)]. Note that the Navier-
Stokes equations are parabolic and elliptic in nature, but the FENE-P model (Eq. (4)) is
hyperbolic. They are coupled through fluid velocity u and viscoelastic force II.

The immersed boundary Eulerian force density f;; in Eqs. (1) and (2) can be computed via
Eq. (6), where « is the Lagrangian coordinate of the immersed structure. The function §
is the classic Dirac delta function. The symbol X is Lagrangian position of the structure.
The function F is the corresponding Lagrangian force density, which is computed from
the elastic potential energies (Eq. (8)) of the structure. In Eq. (8), the first integral
represents the contribution from stretching/compression (£5) and the second one represents
the contribution from bending (&p). The quantities K, and K are bending and stretching
coefficients of the elastic constitutive fibers of the deformable structure. Their numerical
values are related to the Youngs’ modulus and Poisson ratio of the structure [Strychalski,
Copos, Lewis et al. (2015)]. The velocity of the immersed structure U (e, t) is interpolated
from the velocity of surrounding fluid by Eq. (10). Note that this equation by definition
dictates that the immersed structure must follow the motion of fluid because of fluid
viscosity. That is, the no-slip boundary condition is enforced on the fluid-solid interface.

There are three major dimensionless ratios in the FFSI problems involving non-Newtonian

fluids: Reynolds number Re = -Yele  structure flexure modulus K = and

VptVy Pcé(ifbl/ﬁ’
Weissenberg number for polymeric fluid Wi = k7 (or exponent n for power-law fluid).
In above definition, p. is the characteristic fluid mass density, U, is the characteristic flow
speed, L. is the characteristic length of the immersed structure, r,, is the relaxation time
of polymer, 7 is the characteristic flow shear rate, v, is the polymer kinematic viscosity,

and v is the fluid kinematic viscosity. Note that Re measures the ratio of inertial force and
viscous force, K » measures the ratio of the elastic force and inertial force, Wi measures the
ratio of viscoelastic force and viscous force. The index of power-law n < 1 corresponds to
shear-thinning fluid, n > 1 corresponds to shear-thickening fluid, and n = 1 corresponds
to Newtonian fluid.

3 Numerical methods

As we can see, the immersed boundary formulation for the FFSI problems of non-
Newtonian fluids is a nonlinear system of integral and partial differential equations (PDE).
The PDEs are of mixed type (hyperbolic, parabolic, and elliptic). Numerical solution of
this kind of hybrid system is challenging. Here we choose to use the lattice Boltzmann
approach [Wolf-Gladrow (2000); Guo and Shu (2013); Huang, Sukop and Lu (2015);
Succi (2018)] for this system. The lattice Boltzmann approach treats the incompressible
flows as slightly compressible flows (which are governed by hyperbolic PDEs). This
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kind of artificial compressibility approach for the flow equations is consistent with the
hyperbolic nature of the constitutive equations of the non-Newtonian fluids such as FENE-
P fluids. The details of the discretizations for the flow equations, constitutive equations,
and immersed boundary equations are given as below.

The lattice Boltzmann equations, the D3Q19 model [Qian (1990); SY and GD (1998)], are
used to solve numerically the viscous incompressible flow equations (Egs. (1) and (2))
for non-Newtonian fluids. Carefully chosen 19 velocities (with three speeds) are used to
discretize the particle velocity space &€, &; (¢ = 0,1, ..., 18):

(0,0,0), i=0
& =< (£1,0,0),(0,+1,0), (0,0, +1), i=1,2,..,6
(£1,41,0), (£1,0,+1),(0,£1,+1), i=7,8,...,18.

Use g;(x,t) to denote the single-particle velocity distribution function along the direction
of & (i = 0,1, ...,18). The lattice Boltzmann equation (LBE) advancing g;(x, t) one-time-
step forward along the direction &; can be written as

1, &—u §-u

1 ¢
gie &t 1) = gilx. 1) = ~(gi(e, 1) = g™ () - (L= g )wi (B =+

&) fi
(11)

Here f; = f;;, + V - I1 + f;,. The relaxation time 7 is related to the fluid kinematic viscosity

viby T = GVfTH (note vy = n/p). The weight w; is given as follows:

1/3, i=0
wi={ 1/18, i=1,2,...6
1/36, i="1,8,...,18.

Here ¢, = ¢/+/3 is the model sound-speed and c is the model lattice-speed:
0, =0

c=<¢ 1, i=1,2,..6
V2, i=T1,8,..,18.

(eq)

The function g; ™ is the discretization of the equilibrium distribution function:

0D (x,1) = plox, w1+ 38 - 1) 4 5 (& u(x ) — ou(x, ) ulx 1)  (12)

The method introduced in Guo et al. [Guo, Zheng and Shi (2002)] is applied to treat the
external force term. Note that the lattice Boltzmann equation (Eq. (11)) can be regarded
as an explicit second-order accurate discretization in space and time of the flow equations
for viscous non-Newtonian fluids by a Lagrangian approach [Wolf-Gladrow (2000)]. It
is equivalent to a second-order finite difference scheme for the viscous incompressible
Navier-Stokes equations [Junk (2001)].
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For non-Newtonian fluids modelled by power law, the constitutive equation is incorporated
into the lattice Boltzmann flow model (the D3Q19) algebraically by Eq. (3). The shear
rate may be calculated as follows: § = /2D;;D;; , Dj; (i = 1,2,3;5 = 1,2,3) is

computed by D;; = —% :;1)8 &nﬁkjg,(:), where g,(;) = gk —g,(:Q). Here gy, is the velocity

distribution function along k%" direction, g,ieq) is the equilibrium distribution function, and

€ (B =0,1,...,18;4 = 1,2,3) is the i’" component of the k" discrete direction. See
[Zhu, Yu, Liu et al. (2017)] for details.

For non-Newtonian fluids whose constitutive laws obeying the FENE-P model (including
the Oldroyd-B model), the lattice Boltzmann D3Q7 model for advection-diffusion
equations [Malaspinas, Fiétier and Deville (2010)] is applied for numerical solutions of
their constitutive equations. It is coupled with the lattice Boltzmann model for flow
equations through the flow velocity u and viscoelastic force I1. Lattice Boltzmann particles
in the D3Q7 model are allowed to move along six discrete directions (;,7 = 1,2,...,6 at a
node, where

(£1,0,0) i=1,2
¢Gi=<] (0,£1,0) i=3,4
(0,0,£1) i=15,6
Particles can also stay at the node {, = (0,0,0). For a given component of the

configuration tensor C,g, at a given node x, along a given direction (;,7 = 0,1,2,...,6,
the single-particle velocity distribution function ¢,g; is evolved according to

1
2x

VaB (e
) 222 qLD) (Capo ).

1 e
Gopi(X+Ci, t41) —qapi(x, 1) = _;(Qaﬁi(xa t)—CIégqi) (Cap,u))+(1 Cos
(13)

Where the relaxation time Y is related to the diffusivity constant x, by x = 8“27“. The
ratio /1, is set to be a very small number e.g. 1075, here fp 1s polymer dynamical
viscosity. The equilibrium distribution qgleﬁqi) = wiCap(1 + Cj}#), where ¢, is the k"
1
(k = 1,2, 3) component of velocity ¢; (¢ = 0,1,2,...,6). Function o3 = —%(acarg —
bdag) + Coﬂ'% + Cm%uﬁ- The o™ component of the conformation tensor is computed
by Cop = ZZig Gapi + %@bag. The viscoelastic force in Eq. (1) is computed by V - II =
V - (E2(aC — bI)) and the spatial derivative 9,,,i = 1,2,3 is discretized by the central
difference scheme.

The macroscopic fluid mass density p(x,¢) and momentum (hence velocity) pu(x, t) can
be computed from g;(x, t) at each node by

p(x, 1) = gi(x, 1), (14)
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t) = Z&gi(xaf) + ft();t)- (15)

Let integer m denote time step: ¢ = g(x,&,m), X" (a) = X(a,m), u™ = u(x, m),
p™ = p(x,m), pP™ = p(x,m). Let the flexible structure be discretized by a set of elastic
fibers with Lagrangian coordinate ao. Let ao = ko Ao, where ks is an integer. Let a fiber
be discretized by a set of points with Lagrangian coordinate a;. Let oy = k1 A«q, where
k1 is an integer.

Then the elastic potential energy is discretized by:

N;—1 N;—1

’Xk+1 Xl 1\2 1 1 Xpt1 + Xpo1 — 2X|?
fK A —K, Aaq. (1
}: Aoy " DAmtgE B Ror)i a1 (16)

where the ﬁrst term corresponds to the stretching/compression energy and the second term
corresponds to the bending energy. The Lagrangian force density at node with index [,
(F);,1=1,2,..., Ny, is given by

Ny—1

K Xpt1 —
F), = X X, = A Rk, TR
( )l AOQQ ; (’ k+1 k’ al) |Xk+1 Xk| (5kl 6k’+1,l)
+ (Aa1 (Aar)t Z (Xpt1 + Xpo1 — 2X5) (2081 — Opg1,0 — Ok—1,1).  (17)

Here 0y, is the Kronecker §: 6x; = 1if kK = [ and dy; = 0 if k # [. The integral equations
in the immersed boundary formulation are computed by the trapezoidal rule:

£ (x) = Y F" M (a)da(x — X™ (@) Acx (18)
I
U™ (a Zum+1 )da(x — X" () AzAyAz (19)

Here I' denotes the immersed structure, ) denotes the fluid domain. And Az, Ay, and Az
denote the meshwidth in z, y, and z directions. The Dirac § function is discretized by d4:
1 x Y z
S _ V(LN (2 20
109 = o A6 () 20)

Here ¢(r) = 0.25(1 4 cos(0.57r)) for |r| < 2 and is O otherwise. For other choices of
¢(r) see Peskin et al. [Peskin and McQueen (1996)].

The motion equation of the structure is discretized by

Xm+1(a) _ Xm(a)
At

=U"(a) 1)
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For clarity the algorithm of the IB formulation for non-Newtonian fluids is summarized
as follows. Suppose all variables are known at time step t (an integer), the procedure for
updating all of the variables for next time step t+1 is as follows.

0) Initialization of all variables;

1) Advance the LBE (Eq. (11)) for flow (D3Q19 model) from t to t+1 using f;;, and IT from
time step t; compute the new fluid velocity u, velocity gradient Vu, and mass density p;

2) Advance the LBE (Eq. (13)) for the constitutive equations (the D3Q7 model) from t to
t+1 using u and C from time step t; compute the viscoelastic force V - II from the newly
updated conformation tensor C,

3) Compute the structure velocity U from the fluid velocity u by Eq. (19);
4) Update the structure position by its velocity via Eq. (21);

5) Compute the immersed boundary force exerted by the structure to the fluid using its new
configuration via Eq. (17);

6) Convert the Lagrangian force to Eulerian force by Eq. (18);

7) Compute the new equilibrium distribution functions of the q(%]) and ¢(°?) using the newly
obtained fluid velocity u, conformation tensor C, and mass density p;

8) Goto1).

Note that the algorithm for non-Newtonian fluids can be easily combined with algorithm for
Newtonian fluids using the D3Q19 model. Therefore, the new method may be implemented
in one computer program with a single model parameter m,, (an integer) to switch between
Newtonian and non-Newtonian fluids. The option m,, = 0 selects Newtonian fluid. The
code will bypass the D3Q7 model and set II = 0, n = 1. The option m,, = 1 selects the
power-law fluid. The code will bypass the D3Q7 model and set IT = 0. The option m,, = 2
selects the Oldroyd-B fluid. The code will execute the D3Q7 model with ¢ = b = 1 and
set n = 1. The option m,, = 3 selects the FENE-P fluid. The code will execute the D3Q7
model and set n = 1. Thus the Newtonian, power-law, Oldroyd-B, and FENE-P fluids are
seamlessly integrated together in the new 1B method via the lattice Boltzmann approach
and they can be implemented in a single computer code.

4 Verification and validation

The numerical methods involved and their implementations used in the work have been
verified and validated in different settings. The lattice Boltzmann method (D3Q19) and
its implementation have been verified and validated in Zhu et al. [Zhu, Tretheway,
Petzold et al. (2005)]. The lattice-Boltzmann immersed-boundary method (LB-IB) with
its implementation for Newtonian fluid flows have been verified and validated in Zhu et al.
[Zhu, He, Wang et al. (2011b)]. The LB-IB for power-law fluid is verified and validated in
Zhu et al. [Zhu, Yu, Liu et al. (2017)]. The preliminary verification and validation of the
LB-IB method for Oldroyd-B/FENE-P have been reported in a short letter [Zhu (2018)].
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In this paper, the newly developped LB-IB method for polymeric flows are further tested
on two new FFSI toy problems: a flexible sheet being flapped periodically at the middle
and being rotated constantly at one edge in stationary Oldroy-B and FENE-P fluids in three
dimensions. Many simulations with various dimensionless parameters indicate that the
method is conditionally stable. Mesh refinement studies indicate the method is first-order
accurate, which is consistent with the IB framework in general.

5 Test problems

In this section we consider three FFSI model problems. I) a power-law fluid flows around a
flexible rectangular sheet fixed at the midline in a three-dimensional rectangular domain; II)
a flexible rectangular sheet is flapped sideways (left and right) at the midline sinusoidally
in a 3D rectangular box full of an Oldroyd-B; III) a flexible rectangular sheet is rotated
constantly at one edge with a constant speed in a 3D rectangular box full of a FENE-P
fluid.

In case I, the structure is initially stationary. The flow passes around it and causes it to bend
and get aligned with the flow. No-slip boundary condition is applied on the top, bottom,
front, and rear rigid walls. Constant velocity is specified at the inlet and outlet boundaries
(in z-axis). In cases II and III, the fluid is initially stationary and the structure is forced
to move. The active motions of the structures drive the fluid flow. Periodic boundary
condition is applied along all directions of the computational domain. In all cases, the z—
axis points from left to right; the y— axis points from front to rear; the z— axis points
from bottom to top. The sheets are composed of two groups of elastic fibers which can
be compressed, stretched, and bent. The two groups of fibers are cross-linked and are
orthogonal to each other initially. This type of FFSI problem possesses three significant
dimensionless parameters: flow Reynolds number Re, structure bending modulus K3, and
fluid Weissenberg number W; (or exponent n for power-law fluid). Numerous simulations
on the three model problems using various combinations of these parameters are performed
to test the capability of the new method. Some representative simulation results are reported
below for each case.

Case I) An elastic sheet with aspect ratio 1:2 (width versus length) is placed initially on the
y — z plane (i.e., vertical) in the middle of the box (in x, y, and z directions). Its midline
is fixed in a power-law fluid flow and the sheet is free to move otherwise. This problem
was intensively studied by Zhu et al. [Zhu, Yu, Liu et al. (2017)]. More simulations are
performed and some typical results from different combination of values of Re, Kj,n are
shown here. The left panel in Fig. 1 shows the position and shape of the sheet at several
equally distributed time instants from a simulation with Re = 80, Kb = 0.0001,n = 0.5.
The left most is the initial position (vertical and flat). The right most is the final position
(curved). Starting from the initial configuration, the sheet moves and deforms with the
flow, and finally sets down to a quasi-steady state. Note that the position/shape of the sheet
partially overlap for some instants. The right panel in Fig. 1 shows streamlines of the flow
field from a simulation with Re = 120, Kb = 0.05,n = 0.6. The gray surface is the
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position and shape of the sheet. The streamlines start from the lower half plane of the inlet
(using tens of uniformly spaced seeds). Notice the twisted curves behind the sheet. These
streamlines come from the lower half plane at inlet and move to the upper half plane after
past the sheet. This reveals the complicated flow patterns right behind the sheet.

n 4.66-003

U2 1k006
L,,,J A. Streamlines (Re=120, Kb=0.005, n=0.6)
— Time=10,000

Figure 1: Position and shape of the sheet at several instants (left) and streamlines (right)

Case II) A deformable sheet of the same aspect ratio is initially placed the same way
as in case I. Its midline is now forced to flap sinusoidally (on the x — y plane along
z-direction) in an Oldroyd-B fluid. The z-coordinate of the leading edge is given by
z(t) = Asin(%5t). Here z(t) is the z-coordinate of the sheet middle-line, A denotes
prescribed amplitude of flapping, P denotes flapping period, and t denotes time. Some
typical results from different combination of values of Re, Ky, Wi are given below. In
Fig. 2 the left panel plots the shape of the sheet at several equally separated instants from
a simulation with Re = 40, Kb = 0.005, Wi = 0.1. The left most is the initial position
(vertical and flat). The rest is the shape (not physical position) of the sheet at several time
instants within a period. Note that the sheet physical position (x-coordinate) is shifted
horizontally by a constant for the purpose of displaying the shapes at multiple instants
on the same panel. Starting from the initial position, the sheet moves and deforms with
the flapping midline. Spontaneous motion of the sheet along y and z directions are not
seen. The right panel in Fig. 2 shows streamlines of the flow field from a simulation with
Re = 60, Kb = 0.004, Wi = 0.1. The gray surface (partially buried in the curves) at the
center is the position and shape of the sheet. All streamlines start from a vertical plane
(parallel to the initial position of the sheet) near the left boundary of the computational
domain (using 25 uniformly spaced seeds). Notice the colors of the curves denote the
velocity magnitude. The twisted curves around the sheet indicates the complexity of flow
patterns in the vicinity of the structure.

Case III) An elastic sheet with aspect ratio of 1:4 (width versus length) is initially put on
a horizontal plane of the  and y axes in the middle of the box in all three directions (x,
y, and 2). Its right edge is rotated constantly and periodically with a period P (on the
y — z plane anticlockwise) in a still FENE-P fluid. Again, the structure is not restricted
elsewhere and is allowed to move freely in other directions. Some typical results from
different combination of values of Re, K}, Wi are displayed here. In Fig. 3 the left panel



136 Copyright © 2019 Tech Science Press CMES, vol. 119, no.1, pp.125-143, 2019

¥ 0.0e+000
Streamlines (Re=60, Kb=0.004, Wi=0.1)

Figure 2: Shape of the sheet at several instants (left) and streamlines (right)

shows the shape/position of the sheet at a few equally distributed instants from a simulation
with Re = 10, Kb = 0.005, Wi = 1.0. The top most is the initial position (horizontal and
flat). The remaining is the shape (not physical position) of the sheet at several time instants
within a period. Note that the sheet vertical position is shifted down by a constant for
the same purpose as in case II. We see that as the right edge is being rotated, the rest
of the sheet follows the rotation motion. Due to flexibility (instead of being rigid), the
leading edge (initially straight) deforms into a curve and the entire sheet deforms into a
helical structure. As time goes by, more helical structures appear and they appear to move
downstream (from righ to left) in an animation. Interestingly the entire sheet moves forward
towards right boundary slowly. The right panel in Fig. 3 shows streamlines of the flow field
from a simulation with Re = 10, Kb = 0.005, W7 = 1.0. The gray surface (partially
blocked by the curves) is the position and shape of the twisted sheet. All streamlines start
from a horizontal plane parallel and close to the initial position of the sheet (20 uniformly
spaced seeds). The colors of the curves denote the velocity magnitude. The tightly wound
curves around the sheet indicate a rotating flow near the sheet.

Il

m 1.4E-004

L
7 ®0.0e+000
Streamlines (Re=10, Kb=0.005, Wi=1.0)

Figure 3: Shape of the sheet at several instants (left) and streamlines (right)

6 Summary

The existing immersed boundary (IB) framework has been extended in three dimensions
to FFSI problems involving non-Newtonian fluids. The fluids may be power-law, Oldroyd-
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B, or FENE-P. The viscous incompressible Navier-Stokes equations for the flow and the
constitutive equations for the fluid (Oldroyd-B and FENE-P) are simultaneously solved
with the lattice Boltzmann approaches by the D3Q19 and the D3Q7 models, respectively.
The power-law is incorporated algebraically into the lattice Boltzmann flow model. The
new method is tested on three FFSI toy problems: deformable sheets interacting with
power-law, Oldroyd-B, and FENE-P fluids in three dimensions. Our results show that the
new IB method is first-order accurate and conditionally stable.
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