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Abstract: To fulfill the requirements of data security in environments with nonequivalent 

resources, a high capacity data hiding scheme in encrypted image based on compressive 

sensing (CS) is proposed by fully utilizing the adaptability of CS to nonequivalent 

resources. The original image is divided into two parts: one part is encrypted with 

traditional stream cipher; the other part is turned to the prediction error and then 

encrypted based on CS to vacate room simultaneously. The collected non-image data is 

firstly encrypted with simple stream cipher. For data security management, the encrypted 

non-image data is then embedded into the encrypted image, and the scrambling operation 

is used to further improve security. Finally, the original image and non-image data can be 

separably recovered and extracted according to the request from the valid users with 

different access rights. Experimental results demonstrate that the proposed scheme 

outperforms other data hiding methods based on CS, and is more suitable for 

nonequivalent resources. 

 

Keywords: Compressive sensing, encrypted image, data hiding, prediction error, 
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1 Introduction 

There are many application scenarios in Internet of Things or Cloud Computing where 

different entities possess nonequivalent resources. For example, in wireless multimedia 

sensor networks (WMSNs), various nodes, such as common scalar sensors, multimedia 

sensors, multimedia processing hubs and sink, have different requirement about resources. 

Especially general sensors are typically resource- constrained devices which cannot 

afford a huge number of computation, while multimedia processing hubs and sink will 

have comparatively large computational resources [Akyildiz, Melodia and Chowdury 

(2007)]. Due to the resource limitation, there are lots of challenges in its corresponding 

security application [Li, Zhang, Chen et al. (2018)]. Fortunately, the emergence of 

compressive sensing (CS) opens up a new vision for multimedia data security with 

nonequivalent resource limitation. 

CS has gained wide attention since it was introduced. CS can achieve compression and 
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encryption together through matrix multiplication [Rachlin and Baron (2008)]. Compared 

with the stream cipher encryption, the encrypted data based on CS can reduce bandwidth 

resources effectively. Due to this feature of CS, research results based on CS often serve 

multimedia data compression and representation [Wu, Yu, Yuan et al. (2016)]. 

Meanwhile, CS has a low computation cost in the sensing part while the computation of 

recovery is rather complex at the receiving end.  

Information hiding plays an important role in protecting various information from being 

destroyed [Cao, Zhou, Sun et al. (2018)]. Within the current application of CS in 

reversible data hiding, there are two main types: the first one usually embeds data in the 

samples of DCT/DWT and then uses CS to compress [Xiao and Chen (2014)]. The other 

one embeds data in the measured value [Cao, Du, Wei et al. (2016); Li, Xiao and Zhang 

(2016); Pan, Li, Yang et al. (2015)]. However, both of the two schemes have some 

defects. The first one is more suitable for digital watermarking rather than data hiding, 

which focuses on the protection of the copyright about the carrier and the robustness of 

the watermark. But, data hiding puts more emphasis on the capacity and security of the 

embedded information itself. The scheme proposed by Pan et al. [Pan, Li, Yang et al. 

(2015)] is a watermarking scheme for plain image only which does not provide security 

for the cover. The scheme proposed by Cao et al. [Cao, Du, Wei et al. (2016)] is not 

suitable for nonequivalent resources, although this scheme has a brilliant performance on 

recovery. The reason is that sparse representation to vacate room for data embedding in 

the preprocessing operation is very complicated. The scheme proposed by Li et al. [Li, 

Xiao and Zhang (2016)] is a smart data hiding scheme based on block compressive 

sensing, but its capacity is limited by block size. To design a qualified hiding scheme in 

encrypted image based on CS for nonequivalent resources, the computational complexity 

in the sensing part should be focused on. 

In this paper, we propose a high capacity data hiding scheme in encrypted image based 

on CS for nonequivalent resources. Multimedia sensor nodes take pretreatment on covers 

to vacate room and encrypt them by CS. General sensor nodes get non-image data, then 

encrypt them. Multimedia processing hubs gather data from sensor nodes and embed the 

encrypted scalar data into the processed image. Sink node is in charge of managing and 

processing data from hubs, and will extract the embedded data and recover image for the 

valid user with different access rights. Due to the properties of CS, the processes of 

encryption and embedding are simple and suitable for resources constrained device. This 

feature falls in with nonequivalent resources on this point while the process of embedding 

secret data into encrypted image can reduce the data transmission. The main advantages 

of our scheme include the adaptability to nonequivalent resources, the separable 

processing according to different access rights, the improvement of the embedding rate 

and the quality of recovery image. 

The rest of this paper is organized as follows. Section 2 introduces the theory of CS. 

Section 3 provides detailed description of the proposed scheme. The experimental results 

and analysis are shown in Section 4. Finally, this paper is concluded in Section 5. 

2 Compressed sensing 

Given a sparse signal , nX X R , an observation system wants to obtain m  linear 
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measurements: 

Y X=                                                                                                                                         (1) 

Where Φ is a matrix of size *m n ,
mY R . In general, m n . If there exists a constant 

[0,1]k  , for all kX   ,  

2 2 2

2 2 2
(1 ) (1 )k kX X X −    +                                                                             (2) 

Then the matrix Φ satisfies the k-th order restricted isometry property (RIP). The matrix 

approximately preserves the distance between k vectors, and the sparse coefficients can 

be accurately reconstructed from the measurements. In the sampling process, one fact is 

that real world data X may not be always sparse. But as long as it can be represented as a  

1n  sparse vector α under some properly chosen sparse basis 
n nR   via X = , we 

can still use CS theory and have Y X =  =  . Here, let A =  , If matrix A  

satisfies RIP, then the sparse X  could be recovered with high probability from y by 

solving an 1l -minimization problem.                            

1
min   subject to Y A=                                                                                             (3) 

Rachlin et al. [Rachlin and Baron (2008)] pointed out that compressed sensing is 

computationally secure, although CS does not reach the perfect security definition of 

Shannon. So, CS can compress and encrypt when sampling. The standard CS can be 

interpreted as a symmetric encryption system where the original signal X is a plaintext, 

the measurements Y is a ciphertext, and the encryption algorithm is a linear 

transformation operated by a key which is a measurement matrix. 

3 Proposed scheme 

In this section, we present the detailed procedures of our scheme. As illustrated in Fig. 1, 

it involves five entities: multimedia sensor nodes, general nodes, multimedia processing 

hubs, sink nodes and valid users. 

3.1 Image pretreatment and encryption 

For an 8-bit grayscale image I  of size N N , let the pixel value at the position 

( ),i j be
,i jp , where 1 ,1i N M N     and  , 0,255i jp  . As shown in Fig. 1, at the 

multimedia sensor nodes, the original image is first divided into two parts according to a 

checkerboard style. If the indices i  and j  satisfy ( )mod2 1i j+ = , then 
,i jp  is classified 

into J part. And the rest pixels in I  fall into H  part.  

For J part, each pixel 
,i jp  can be represented by 8 bits as its value range is from 0 to 255: 

( )
,

, mod 2, 0,1,...,7
2

  
i j

i j d

p
p d d

 
= = 
 

                                                                                     (4) 
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Where     is a round operator towards minus infinity. The d -th bit of 
,i jp  is encrypted 

through exclusive-or(Xor) operation: 

( ) ( ) ( ), , ,i j i j i jE d p d r d=                                                                                                     (5) 

Where ( ),i jr d  is generated by a pseudo-random generator with the encryption key. 

Finally, J  part is encrypted into 'J . 

Before J  has been encrypted, interpolation technique [Luo, Chen, Chen et al. (2010)] is 

used to estimate 'H  from J , and the errors between 'H  and H  are set as D : 

( ) ( ) ( ), , ' ,D i j H i j H i j= −                                                                                                   (6) 

Then, D  is encrypted and compressed into 'D  by CS: 

D D A  = = =                                                                                                 (7) 

Where   is known as the measurement matrix, D  is the original prediction errors,   is 

set as a sparse matrix for D ,   is known as the sparse coefficients of D , and the sensing 

matrix A  can be regarded as an encryption key. During this process, the restricted 

isometric property should be satisfied.  

Next, pseudo-random bits are padded in front of 'D  to let ''D  have the same size with D , 

and the number of padded bits is the embedding capacity which is determined by the 

compression ratio. The last step is to embed the embedding capacity in the first three 

positions of ''D , as the front of ''D  is vacated for data embedding. 

Finally, the encrypted image with vacated room, 'I , is generated by restoring the 

corresponding position of 'J  and ''D in the checkerboard, where iK and A  can be 

considered as the encryption key. 

 

Figure 1: The flow chart of the proposed scheme 
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3.2 Message encryption 

General sensor nodes gain other types of data M  such as temperature, humidity and 

position. For security, these data need to be encrypted as well. Here, a standard stream 

cipher is used to encrypt the data into 'M  by bitwise exclusive-or operation with a 

pseudo-random bit sequence generated by the key mK . This process is similar to Eq. (5). 

3.3 Data hiding in the encrypted images 

At the multimedia processing hubs, the encrypted image should be partitioned into 'J  

and ''D  at first, and the embedding capacity is extracted from the first three positions in 
''D . Then, the encrypted data 'M  is embedded into "D  by replacing the former padded 

pseudo-random bits. As the data is embedded in the front of ''D , if image is directly 

restored according to the corresponding location, the embedded data will be in dangerous. 

In order to improve the security, the block with embedded data, *D , will be lightly 

encrypted into * 'D by digitized Arnold transform: 

( )1

1

1
mod

1

n n

n n

x xa
N

y yb ab

+

+

    
=    

+    
                                                                                        (8) 

where a , b  and n  are positive integers, and they can be considered as the key for 

embedding secret data. 

In the last step, * 'D  and 'J  should be restored to the original position to obtain *I , the 

encrypted image with embedded data. And the message encryption key mK and Arnold 

transform’s parameters a , b  and n are known as the data hiding key. 

3.4 Data extraction and image recovery 

Sink node will extract data and restore image according to the request from valid users 

with different access rights. 

If valid user can access comprehensive data including image and embedded data, sink 

node will recover image, extract embedded data and send them to user by both data 

hiding key and encryption key. The processes in the extracting and recovering are the 

inverse of data embedding and image encryption, so they are not elaborated here. CS 

reconstruction is a solution of the minimal 1l  norm [Donoho (2006)]. 

In the second case, if the valid user can only access embedded data, sink node will extract 

data by the hiding key and deliver it to user. 

In the third case, if the valid user can only access approximate image, sink node will 

decrypt the 'J  part in 
*I  by the encryption key and then provide an approximately 

recovered image without embedded data through interpolation. 

For the latter two cases, the resource consumption can be effectively reduced because CS 

reconstruction is not in need. 

4 Experimental results and analysis 

In this section, eight 512×512 standard images, including Lena, Cameraman, Baboon, 

Barbara, Boat, Plane, Peppers and Mondrian, are used in the experiment. Besides, another 



 

  

 

6   Copyright © 2019 Tech Science Press                     CMC, vol.58, no.1, pp.1-13, 2019 

test image set containing 100 images is formed by randomly selecting from Corel 

database which is available from CorelDraw version 10.0 software. And the selected 

image is cropped to 512×512 pixels and turned into grayscale. The prediction error is 

calculated by interpolation technique. The sampling operator is scrambled dense FFT 

[Candes and Romberg (2006)]. The sparsifying transform is the 9-7 wavelet transform 

used in the JPEG 2000 standard and the optimizer is based on the GPSR program 

[Figueiredo, Nowak and Wright (2008)]. 

4.1 Evaluation of the proposed scheme 

In our scheme, the vacated room for embedding data is obtained by CS. Therefore, the 

embedding rate is directly related to the compression rate of CS on  part in Fig. 1. Since 

only half of each image is processed by CS, for an 8-bit gray image, the relation is  

( ) ( )0.5 1 8 4 1ER  =  −  =  −                                                                                           (9) 

 

where  is the compression rate of  part, and ER is the embedding rate, as listed in Tab. 

1. The first three columns in Tab. 2 show the recovered image PSNR with both the 

encryption key and data hiding key under different embedding rates for different images. 

It indicates that the PSNR will rise with the decrease of embedding rate. Fig. 2 shows 

more detailed experimental results. And the last row in Tab. 2 lists the average of each 

Table 1: The relation between embedding rate and compression rate 

Compression ratio  of D part Compression ratio for image Embedding rate (bpp) 

0.4 0.7 2.4 

0.6 0.8 1.6 

0.8 0.9 0.8 

 

Table 2: PSNR(dB) with different embedding rates for different test images 

Embedding 

rate(bpp) 
2.4 1.6 0.8 

Recovered image with only 

encryption key 

Lena 41.1628 43.6153 47.2990 38.4794  

Camera 32.7707 34.6330 38.0325 31.0552  

Baboon 30.0623 32.3724 36.0897 27.7775  

Barbara 32.4655 36.4079 41.5642 29.0003  

Boat 36.1654 38.3364 41.8668 33.9686  

Plane 40.2079 43.0778 47.4222 37.1712  

Peppers 37.8241 40.1419 43.6617 35.3252  

Mondrian 41.9096 43.9259 47.2470 36.2618  

Average 36.5710 39.0638 42.8979 33.6299  
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column. It also shows that even if the embedding rate is as high as 2.4 bpp, the lowest 

PSNR is larger than 30 and hence acceptable. We also test the selected set with 100 

images, and give the results in Fig. 3. Both the fourth column of Tab. 2 and Fig. 3(d) 

show PSNR of the recovered approximate image in the case of with the encryption key 

only. Meanwhile, for different images with unique textures, their distributions of 

prediction errors are disparate, so the errors caused by CS on prediction errors  are also 

slightly different. Tab. 2 shows that the smoother the image is, the better the experimental 

result will be. 

 

In the schemes of data hiding in CS domain, both the cover data (sparse samples) and the 

embedded data are exactly recovered under certain noise, payload and sparsity conditions, 

so these methods can be qualified as conditionally reversible data hiding [Yamaç, Dikici 

and Sankur (2016)]. In our scheme, CS is the only part of the whole process that will 

bring the loss, and the sensing object of CS is the prediction error. The accuracy of part, 

the first half of the original image, is ensured; while the other half of the original image, 

part, can be recovered based on both the interpolation technique and the prediction error 

reconstructed by CS. As a result, the proposed scheme has a good recovery performance. 

This can be seen in Fig. 2, Fig. 3 and Tab. 2. When the compression rate is significantly 

low, the quality of the full recovery image is close to the one using interpolation 

technique only. Of course, the higher the compression rate is, the smaller the error of CS 

reconstruction is, and the quality of recovery image will be higher. When the 

compression rate approaches 0.95, the PSNR values of the full recovery image are greater 

than 43, and may even be close to 55. 

 

Figure 2: Relationship between compression ratio  and PSNR 
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(a) ER=0.8 bpp 

 

   (b) ER=1.6 bpp 

 

(c) ER=2.4 bpp 

 
(d) Recovered image with only encryption 

key 

Figure 3: The PSNR under different ER values 

It should be noted that the computation in the encryption and embedding processes of the 

proposed scheme is relatively low because there are only arithmetic and matrix 

multiplication. And in the process of image recovery, 1l optimization problem is a 

relatively complex operation. Meanwhile, since this is a high capacity scheme, other 

types of non-image data and part of image data can be embedded into the cover image to 

reduce the transmission consumption. The comprehensive data collected in the same area 

can be considered as the properties of the region and has its special usage. In our scheme, 

the obtained comprehensive data, including the encrypted non-image data and image in 

the same area, can not only ensure the data security, but also be convenient for data 

management. 

Therefore, the scheme is suitable for the applications with nonequivalent resources. 

4.2 Performance comparison 

When compared with other schemes based on CS, it can be seen from Fig. 4 that the 

proposed scheme has a better recovered image performance when using the same 
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compression ratio for the whole image. In Fig. 4, the abscissa indicates the compression 

ratio, and the ordinate indicates the PSNR value of the recovered image. The reason is 

that only half of the data in the original image is processed and compressed by CS, and 

the other half is processed by the conventional stream cipher. Therefore, the quality of the 

restored image is ensured to be significantly better than other schemes based on CS. 

 

(a) Lena 

 

(b) Plane 

 

(c) Baboon 

 

(d) Barbara 

Figure 4: Comparison results of the same compression ratio 

Moreover, we make a comprehensive comparison among our scheme and some typical 

data hiding schemes based on CS in Tab. 3. According to Eq. (9), the maximal theoretical 

embedding rate of the proposed scheme is 4 bpp, and we calculate the average PSNR 

values of the recovered Lena under different embedding ratios for different schemes. It 

should be noted that although the title of the scheme proposed by Li et al. [Li, Xiao and 

Zhang (2016)] contains “reversible data hiding”, it is not a lossless scheme, so its PSNR 

is not infinite. Based on Tab. 3, the proposed scheme has the largest theoretical capacity 

so that the embedding rate can be adaptively adjusted according to different 

requirements. 

At the same time, the quality of recovered image is only worse than he scheme proposed 

in Cao et al. [Cao, Du, Wei et al. (2016)]. However, since the background of our scheme 

is resource deficient device, we need to focus on the computational complexity about 
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image pretreatment and encryption (as the embedding operation is relatively simple, and 

the data extraction side has more resources for complex calculation). According to the 

scheme proposed in Cao et al. [Cao, Du, Wei et al. (2016)], its computational complexity 

is ( )2O N KL + ( )22 logO N N  + ( )2O RN + ( )2O N , where N  is the image size, K is the 

number of dictionary atoms, L  is the nonzero element number in each coefficient vector, 

and R  is the embedding round number. Meanwhile, the computational complexity of our 

scheme is ( ) ( )2 2O N O MN+  corresponding to the three main processes: stream 

encryption, prediction error estimation and CS, where N  is the image size, and M  is the 

row number in measurement matrix. In this aspect, our scheme is more suitable for 

nonequivalent resources than the scheme proposed by Cao et al [Cao, Du, Wei et al. 

(2016)]. 

All in all, the proposed scheme is a high capacity data hiding scheme which is more 

suitable for resource-constrained devices and has a better performance while comparing 

with other existing schemes. 

Table 3: Performance comparison 

Method 
[Xiao 

(2014)] 

[Cao 

(2016)] 

[Li 

(2016)] 

[Pan 

(2015)] 
Proposed 

Techniques CS+DWT 
CS+sparse 

coding 
CS CS+DCT 

CS+predictio

n error 

Avg-PSNR (Lena) 36.7  35.8 32.5 43.0 

Max-embedding rate 

(bpp) 
1 0.8 0.0078 0.0036 4 

Encryption Y Y Y N Y 

Separable (decryption 

and extraction) 
Y Y N Y Y 

Resource limited 

condition 
Y N Y N Y 

 

4.3 Security of encrypted image 

In this section, we will discuss the security of the encrypted image in the proposed 

method. 

The natural images pixels are highly correlated. A qualified encryption algorithm must 

break the correlation between adjacent pixels to resist statistical attack. A correlation 

coefficient value “one” represents a highly correlated image which is susceptible to 

statistical attacks. Correlation Coefficient (CC) is given by                    

cov( , )

( ) ( )
xy

x y
r

D x D y
=                                                                                                                     (10) 
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Where 
1

1
cov( , ) [ ( )][ ( )]

p

i i

i

x y x E x y E y
p =

= − − , 
1

1
( )

p

i

i

E x x
p =

=   , . 

Compression ratio  of D part is 0.5. 2000 pixels and their corresponding adjacent pixels 

along the horizontal, vertical and diagonal directions are randomly chosen for the 

correlation analysis. So, for an ideal cipher image, the correlation coefficient should be 

close to zero. From the Tab. 4, we can infer that in the proposed scheme, the correlation 

between adjacent pixels in the cipher image is negligible. Structural Similarity Index 

(SSIM) is used for measuring the similarity between the plain image and the encrypted 

image. Tab. 4 also shows the SSIM of our proposed method is close to zero. Compared 

with the traditional image encryption method through exclusive-or(Xor) operation, the 

proposed method can obtain similar correlation coefficients and SSIM. So the security of 

the encrypted image is acceptable. 

 

The randomness of the image is measured by Entropy as 

2

1

( ) ( ) log ( )
N N

i i

i

H x P I P I


=

= −                                                                                                 (11) 

For an image with 256 grey levels the absolute maximum of entropy is 8 bits per pixel. 

The maximum entropy is obtained when the gray levels have equal probability of 

occurrence. Hence for a cipher image, the entropy value should be close to 8. From Tab. 

5, we can infer that the lower the compression ratio  of D part, the greater the entropy. 

The encrypted image has high randomness as the entropy of cipher is close to the 

theoretical value of 8.  

 

 

Table 4: Correlation Coefficient (CC) and SSIM 

Test 

Image 
Direction 

CC of 

Plain 

Image 

CC of Cipher Image SSIM 

Proposed 
Encrypted 

through Xor 
Proposed 

Encrypted 

through Xor 

Lena 

Horizontal 0.83751 0.0034 -0.0149 

0.0126 0.0055 Vertical 0.9077 0.0065 -0.0138 

Diagonal 0.8007 -0.0058 0.0030 

Boat 

Horizontal 0.8140 0.0073 0.0160 

0.0072 0.0078 Vertical 0.8189 -0.0033 -0.0243 

Diagonal 0.7107 -0.0103 -0.0071 

Peppers 

Horizontal 0.8786 0.0096 0.0094 

0.0029 0.0023 Vertical 0.8145 -0.0013 -0.0037 

Diagonal 0.9050 0.0085 -0.0065 
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Table 5: Entropy of encrypted image 

Test 

Image 
Plain Image 

Encrypted through 

Xor 

Compression ratio  of D part 

0.7 0.5 0.3 

Lena 7.2725 7.9868 7.9188 7.9437 7.9697 

Boat 7.2018 7.9884 7.9198 7.9437 7.9716 

Peppers 7.5967 7.9881 7.9027 7.9345 7.9702 

 

5 Conclusion 

In this paper, a high capacity data hiding scheme in encrypted image based on CS is 

proposed. In this scheme, image decryption and data extraction are separable to match the 

requests of the users with different access rights. The experimental results have 

demonstrated that it performs well in the tradeoff between the embedding rate and the 

recovered image quality. Compared with other data hiding schemes based on CS, the 

proposed one is much more suitable for nonequivalent resources. In our future study, a 

part of image may be embedded into other image data to further reduce the transmission 

consumption. 
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