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Abstract: Underwater target recognition is a key technology for underwater acoustic 
countermeasure. How to classify and recognize underwater targets according to the noise 
information of underwater targets has been a hot topic in the field of underwater acoustic 
signals. In this paper, the deep learning model is applied to underwater target recognition. 
Improved anti-noise Power-Normalized Cepstral Coefficients (ia-PNCC) is proposed, 
based on PNCC applied to underwater noises. Multitaper and normalized Gammatone 
filter banks are applied to improve the anti-noise capacity. The method is combined with 
a convolutional neural network in order to recognize the underwater target. Experiment 
results show that the acoustic feature presented by ia-PNCC has lower noise and are well-
suited to underwater target recognition using a convolutional neural network. Compared 
with the combination of convolutional neural network with single acoustic feature, such 
as MFCC (Mel-scale Frequency Cepstral Coefficients) or LPCC (Linear Prediction 
Cepstral Coefficients), the combination of the ia-PNCC with a convolutional neural 
network offers better accuracy for underwater target recognition. 
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1 Introduction 
With the development of marine resources and the implications of national security, 
underwater target recognition technology is becoming more widely used. It is a key area 
in the study of target recognition technology and is a vital issue in the field of acoustic 
signal processing. Scholars at across the globe have studied the topic from many aspects 
proposed solutions that analyze and resolve problems of underwater target recognition 
from different perspectives. However, based on current requirements, the main challenge 
in underwater target recognition is one-sidedness of feature representation, resulting from 
multiple feature representation methods. The combination of time and frequency signals 
of underwater target noise, and the formation of a feature extraction method based on 
both is the main focus of this paper. 

                                                      
1 College of Computer Science and Technology, Harbin Engineering University, Harbin, 150001, China. 
2 College of Computer and Information Engineering, Heilongjiang University of Science and Technology 

Harbin,150022, China. 
3 College of Engineering and Computing, Georgia Southern University, Georgia, 30458, USA. 
*  Corresponding Author: Jianguo Sun. Email: sunjianguo@hrbeu.edu.cn. 



170    Copyright © 2019 Tech Science Press      CMC, vol.58, no.1, pp.169-181, 2019 

Great importance has been attached to underwater target recognition technology by the 
academic and application sectors since earlier 1950s. Scholars in the USA have studied it 
since 1960s and Feigenbaum et al. in Stanford university developed the underwater 
prediction expert system and the improved SIAP by extracting features of narrow-band 
signal with signal recognition spectrum and related algorithms, in addition, related 
submarines in the USA and Britain have been equipped with the recognition system 
[Purton, Kourousis, Clothier et al. (2014)]. After that, scholars in Japan developed the 
SK-8 underwater target warning system based on FFT system, which compares the target 
signal with the existed spectrum to judge the target type [Xiao, Cai and Liao (2006)]. A.J. 
Bonner et al. in Canada developed the expert analysis system called INTERSENSOR based 
on the vessel radiated noise signal [Araghi, Khaloozade and Arvan (2009)]. Wu et al. [Wu, 
Jing, Chen et al. (1998); Wu, Li and Chen (1999)]  have combined the energy spectrum of 
vessel noise with traditional statistical theory to recognize target with clustering. Yang 
Desen proposed the three-factor theory and judgement for line spectrum [Gu and Yang 
(2004); Li and Yang (2007)]. Han Shuping proposed a target spectrum of Spatio-temporal 
joint to differentiate target spectrum and self-noise spectrum effectively [Shu and Ping 
(2009)]. Yang Chunying applied the multiresolution decomposition algorithm and wavelet 
transform theory in the extraction of underwater target recognition power spectrum, in 
which the variable scale features of wavelet transform are used to obtain the better 
frequency resolution compared with the traditional short time Fourier transform method, 
improving the feature extraction accuracy greatly [Xi, Zou, Yang et al. (2011)].  
With the rapid development of recognition technology, such technologies as neural 
network and deep learning have performed well in classification in competitions for their 
great nonlinear representation capacity. The SD-Section company in Britain has used two 
supervised learning methods and neural network structure to develop underwater target 
analysis system. Similarly, scholars at home have followed the study well. Wu et al. [Wu, 
Li and Chen (1999)] have extracted features like line spectrum and other characteristics 
of radiated noise, and established the template matching base as well as made use of 
fuzzy statistical theory and neural network to predict the classification of underwater 
vessels, what’s more, they have made a good prediction performance. Wang et al. [Wang 
(2007)] have studied several joint extraction technology in spectrum features and 
improved the stochastic adaptive genetic algorithm and trained it with neural network, 
thus a good classification model was obtained.  
In this paper, the auditory perceptual feature is introduced for underwater target 
recognition, and the improved anti-noise power-normalized cepstral coefficients method 
(ia-PNCC) is proposed, based on the PNCC auditory feature with multitaper and 
normalized Gammatone filter banks. It has been combined with a convolutional neural 
network to interpret data from both the time and frequency domains, and applied to 
underwater target recognition. The extracted frequency domain features of the target 
noise found by the ia-PNCC are represented as a vector of the convolutional neural 
network. In this work, we first show the optimized convolutional neural network model 
and parameters, then present the auditory perception of the sonar using attributes of the 
convolutional neural network. We showed that the underwater target noise vector 
representation based on the ia-PNCC was able to improve underwater target recognition 
compared with previous methods, including the MFCC and LPCC. 
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This paper demonstrates an improvement of the PNCC, to make it applicable to 
underwater target noise feature extraction and representation. It also shows how to 
combine underwater target noise feature representation with convolutional neural 
networks. The paper is organized as follows: the second part introduces the related 
concepts and application technology, the third part reports the problem and improvement 
to the PNCC method, and the fourth part reports experimental verification. 

2 Related work 
2.1 Underwater target noise processing 
Underwater target recognition covers several disciplines, including transducer technology, 
testing technologies and digital signal processing. With the development of damping and 
noise reduction technology, the noise levels radiated by vessels is becoming lower and 
lower. Thus, it is more difficult to obtain samples of target-radiated noise. How to extract 
the underwater target-radiated noise signal and effective feature parameters in low signal-
to-noise conditions is a key issue in identifying target types.   
The features of underwater target-radiated noise are physical forms, and the detection via 
sonar has relatively objective standards. Tucker has verified the feasibility of analyzing 
water signal with auditory perception method in 2001, since then, with the development 
of study on auditory perception in recent decade, people have attached great importance 
to the role of auditory perceptual feature in underwater target recognition. Liu et al. [Liu, 
Sun and Yang (2008)] have proposed a feature extraction method based on human 
hearing model targeting to the defects of MFCC in recognition accuracy and robustness 
[Qu and Li (2007)]. Yang Yixin verified the better recognition performance of MFCC 
under non-noise disturbance condition, however, the recognition performance under 
noise disturbance condition will decrease a lot [Liu, Sun and Yang (2008); Yang, Yang 
and Wang (2016)]. Wang et al. [Wang, Zuo, Huang et al. (2011)] shows that the LPC 
cepstrum is a good method to study the time domain feature of the signals, and the 
signals are able to be separated into excitation component and vocal channel component. 
Literature [O’Shaughnessy (2002)] introduces it into underwater target recognition, 
achieving a better experiment performance. However, with both MFCC and LPCC there 
are limitations resulting from by their own characteristics. LPCC assumes that there is a 
linear predictive structure in the signal, which is suitable for vocal sounds with periodic 
features. However, for an underwater target passing through water at high speed, most of 
the radiated noise is turbulent. In fact, the LPCC method imposes an incorrect structure 
on turbulent noise. Similarly, there are problems with the MFCC-as the adjacent frame 
feature is extracted independently, which ignores internal correlations within signals 
[Wang, Li, Yang et al. (2016)]. Although the relation can be compensated by overlapping 
adjacent frames, there is no reasonable overlapping parameter for the real-world 
applications.   
Compared with the MFCC and LPCC, the PNCC shows some anti-noise capacity [Lu, 
Zhang and Hu (2004)]. In this paper, we use auditory perception principles to describe 
the target noise. According to the obtained sound noise power spectrum, the ia-PNCC is 
extracted and applied to the underwater target recognition convolutional neural network. 
This process performed well under real-world conditions. 
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2.2 Convolutional neural network 
Deep learning is a nonlinear information processing technology, which is able to achieve 
multiple tiers of information representation for the extraction and transformation of 
supervised or unsupervised features. Current acoustic target recognition method depend 
on previous experimental and expert knowledge, however deep learning algorithms are 
able to learn and find the classification information of noise automatically and 
dynamically, and adaptively construct a decision classification system. In underwater 
target recognition, most of the applications attached great importance to the artificial 
neural network.  
A convolutional neural network (CNN) is an idea originated from the biologists’ deep 
study on animal auditory perception principles after the neuron model was proposed in 
the end of 1940s. In the 1990s, Lecun et al. [Lecun and Bengio (1998)] constructed the 
LeNet-5 model based on the study of handwriting recognition, which adopted the 
alternately connected convolution tier and pooling tier as well as the full connection tier 
classification to set the foundation for modern convolutional neural network. In recent 
years, studies on structure of convolutional neural network enjoy great passions and some 
network structures with great performance are proposed. Since 2012, the AlexNet 
[Krizhevsky, Sutskever and Hinton (2012)] proposed by Krizhevsky et al. [Krizhevsky, 
Sutskever and Hinton (2012)] has won in the diagram classification competition in the 
large diagram data base ImageNet, surpassing the second place with 11%, for which, 
incessant convolutional neural network models are proposed after the convolutional 
neural network becomes the academic focus. And the models include the Visual 
Geometry Group (VGG) in Oxford University, GoogLeNet [Szegedy, Liu, Jia et al. 
(2015)] of Google and ResNet [Kaiming, Xiangyu, Shaoqing et al. (2015)] of Microsoft 
and so on, which have all broke the records of AlexNet in ImageNet.  
In this paper, the CNN is applied to underwater target recognition, and the network model 
and parameters are adjusted and set by experiment and analysis, making full use of CNN 
to describe the auditory perception capacity in target recognition. The experimental 
results show that in underwater target recognition, the application of the CNN improves 
the recognition rate by 10-15% in the accuracy rate compared to a BP neural network. 

3 Noise feature extraction of underwater target based on anti-noise PNCC 
The PNCCis proposed by Kim et al. [Kim and Stern (2016)] and has a structure very 
similar to the MFCC and PLP. Compared with MFCC and GFCC, PNCC is able to 
remove the influence of background noise effectively with long time frame power 
analysis without losing recognition performance and calculation complexity. However, in 
terms of underwater target recognition, some processing methods of PNCC would 
eliminate noise of equipment and target channel. Therefore, improvements are made from 
two aspects in this paper to maintain target channel noise information when eliminating 
background noise. And the accuracy and robustness of recognition system are promoted 
greatly. The ia-PNCC processing is showed in Fig. 1. 
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Figure 1: The extraction process of ia-PNCC 

The PNCC is composed of three parts, comprising preprocessing, environment 
compensation, and post-processing. The initial processing stage is made up of pre-
emphasis, a short-time Fourier transform, magnitude squaring, and Gammatone 
frequency integration. In the environment compensation stage, the long-time power 
calculation is completed, and asymmetric and temporal masking is carried out, as well as 
weight smoothing. Normalization of the time-frequency domain and power are also 
finished in this stage. In the post-processing stage, the initial PNCC is similar to the 
process of the MFCC process, in which the previous data results are processed in a 
nonlinear way and transformed inversely. Generally, it is obtained by the discrete cosine 
transform (DCT), and the value of it is the cepestrum result. However, different from the 
MFCC, power function is used here to finish nonlinear processing. Compared with the 
initial PNCC, the ia-PNCC proposed in this paper targets to improving the underwater 
target noise. And in the preprocessing stage, the preprocessing is removed and the 
original signal is maintained, also, the multitaper is used to extract the frequency signal; 
and in the environment compensation stage, normalized Gammatone filter banks is used 
to replace the traditional Gammatone filter banks; and in the post processing stage, CMU 
is removed to simplify the operation to improve the processing speed.  

3.1 Removing pre-emphasis in the noise signal 
Pre-emphasis is a method to augment the signal in the overall detected signal at the 
sending end. The signal may be lost while travelling through the transmission medium, so 
the damaged signal must be processed to augment the signal wave at the receiving end. In 
fact, pre-emphasis suppresses the low frequencies to flatten the signal spectrum for the 
channel parameter estimation later. All of these works are effective for the recognition 
and identification of sound. The power in low frequency part is more while less in high 
frequency part. However, the power spectral density of the output of the frequency 
detector is proportional to the square of the frequency, which means that the signal-to-
noise ratio is larger for low frequencies.  
In underwater target recognition, processing of the noise signal not only requires 
extracting the phoneme characteristics of targets, but also needs to focus on the channel 
information of the sounding equipment. Previous work has shown that the equipment 
channel information changes rather slowly compared to other phoneme parts and most of 
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the information is in the low-frequency part. Given this, pre-emphasis in the original 
noise input is likely to suppress the channel information in the low-frequency part. In 
addition, the classifier after feature extraction is a convolutional neural network, which 
has excellent nonlinear processing capacity. The training data in the convolutional neural 
network should be of high quality; therefore, in order to avoid damaging the underwater 
target noise feature in the initial stage, the pre-emphasis of the PNCC was removed in 
this paper first to reduce the artificial disturbance in the original signal. The effect of 
removing pre-emphasis is showed in Fig. 2. 

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

0

-2

-4

6

4

2

10-3

8
No pre-emphasis

Pre-emphasis

 
Figure 2: The frequency spectrum obtained by removing pre-emphasis and normal 
process 

3.2 Replacing the hamming window with multitaper window  
Fourier change is able to analyze the components in frequency spectrum in the noise 
signal, however, the real noise is the non-robust information that changes with time. And 
there is limitation of Fourier transformation in processing non-robust signals. In order to 
solve the problem, the short time Fourier transformation is chose to extract features. For 
the variability in the underwater targets, there are too much target feature information in 
the underwater noise signal, which is higher than the number needed for single 
recognition tasks. When adopting the single time-frequency window function to extract 
information, not only the extracted feature information is limited, but the extraction will 
be unsmooth and the spectrum will be distorted, therefore, Kinnunen et al. combined 
multitaper with MFCC, which improved the recognition accuracy characterized by 
MFCC and PLP. In this paper, the multitaper function was used to extract the features of 
underwater target noise signal. With the multitaper function, most of the frequency 
spectrum information would be maintained and a smooth result would be provided. 
Therefore, the multitaper function is adopted in this paper to extract the features of 
underwater target noise signal.  
A given underwater target noise segment can be represented as a vector 𝑥 =
[𝑥(1), 𝑥(2), … , 𝑥(𝑁)], and the short time Fourier transformation can be represented in 
Eq. (1). 
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Where 𝑤(𝑡) is the window function, which is typically a Hamming function-a single 
trigonometric function window formed by a tapered sine or cosine function. When 
adopting a single time-frequency window function, the extracted information is limited 
and the processing of signal would not be smooth enough. Thus, in this paper, the 
multitaper was used to realize weighted mean for frequency information to obtain the 
final spectrum estimation. 
The multitaper weighted mean spectrum estimation for frequency information can be 
represented in Eq. (2). 
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Where 𝜙(𝑖) is the weighted coefficient of added subwindow, and 𝑤𝑘(𝑡) is the multitaper 
window.  
The sine taper is adopted in this paper. In addition, the number of window function is an 
important parameter, the value of which would affect the calculation efficiency, and the 
number of multitaper is set as 3 in this paper.  

3.3 Normalization of the Gammatone filter banks  
In studies on auditory perception, it was found that the analysis and processing of 
acoustic signals in the basal membrane of the human cochlea are equal to the filtering and 
frequency decomposition processes. The Gammatone filter group is very close to the 
auditory properties of the human ear and the impulse response of the Gammatone in 
time–frequency can be represented in Eq. (3).  

1 2
0( ) cos(2 ), 0n bth t ct e f t tπ π φ− −= + >               (3) 

where c is the constant to adjust proportion; n is the filter order, which is set as 4; b is the 
declining speed, which is usually a positive number; f0 is the center frequency, and; ɸ is 
the phase, which can be omitted for human ears’ insensitivity to the phases. 
There is an inhibitory action in the Gammatone with respect to additive background noise 
and white Gaussian noise. However, processing the Gammatone increases the high-
frequency part of the noise, so as to decrease the low-frequency signal-to-noise ratio, 
which is related to speech recognition applications. Compared with the background noise 
of slow changes, the speech needs to be strengthened. However, this approach is not 
suitable for underwater target recognition. The poor underwater acoustic environment 
and multiple recognition of object is the main reasons for the noise itself to be hidden 
within background noise and be undetectable. Therefore, a simple improvement of the 
high-frequency part in the target-radiated noise would not be effective. In this paper, the 
value of the channels in the Gammatone filter group is normalized and the traditional 
Gammatone filter for high-frequency enhancement of the noise signal is removed, so as 
to promote the ratio of low-frequency waves in the processing results. The normalized 
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Gammatone filter group in this paper is shown in Fig. 3. 

(a) Original Gammatone filter banks (b) Imroved Gammatone filter banks
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Figure 3: Comparison between the original Gammatone filter banks (a) and the improved 
Gammatone filter banks (b) 

4 Experiment and analysis 
4.1 Data set 
We used two kinds of experimental data. One was underwater data recorded by different 
sounding bodies with 18-channel hydrophones in an anechoic tank, for which the 
experimental structure is shown in Fig. 4. The experimental targets were divided into 
three types. The data sizes are shown in Tab. 1. 

 

Figure 4: Experimental environment of the muffling pool and data collecting plan 

Table 1: Experiment data size and distribution 

Name Total Train Test 
Target 1 4800 3600 1200 
Target 2 10000 7200 2800 
Target 3 3470 2450 1020 

It can be seen in Tab. 1 that a fine classification has been made for the three kinds of 
targets in the experiment. The total number of samples is 18270, and 13250 of them are 
used as training set, which accounts for 72.5% in the total sample. 5020 are used as 
testing set, accounting for 27.5% in the total sample.  
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In addition, data were collected by underwater sound collecting equipment in real waters, 
in order to verify the feature extraction capacity of the auditory perception plan. The 
target vessel used only sound monitoring equipment and moved at various speeds along 
different trajectories in accordance with the experiment requirements. The experiment 
environment and measurement conditions are shown in Fig. 5. 
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Figure 5: Real underwater experimental environment and data collecting plan 

The vessel moves with different sounding bodies and at different speeds, and the 
experiment defines them as different targets, and the specific data size is showed in Tab. 2.  

Table 2:  Experiment data size and distribution for testing in river 
Data content Audio parameter 

Data 
number Power Distance Channel Digitalizing  

bit 
Sampling 
frequency 

Sampling 
number 

8 horsepower  160 m/260 
m/350 m 3 2 48000 4800 8192 

90% power 50 m/260 
m/350 m 3 2 48000 4800 31744 

90% power 260 m 3 2 48000 4800 24576 

8 horsepower 350 m  with 
salvage ship 3 2 48000 4800 28672 

90% power  350 m  with 
salvage ship 3 2 48000 4800 30720 

It can be seen from Tab. 2 that a fine classification has been made for the five types of 
targets in the experiment. The total number of samples was 100,000, and 74,496 of them 
are used as the training set, accounting for 75% of the total with 24,832 used as testing 
set, accounting for 25% of the total.  
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4.2 Experimental results and analysis 
In this paper, a convolutional neural network was used as the underwater target recognition 
classifier, with the nonlinear features of the convolutional neural network being used to 
represent the sonar’s perception capacity. The multiple channel underwater target noise was 
spliced in accordance with the arrangement of the multichannel hydrophones and the time-
sequence relation between each segment of noise data. This data formed the input dataset 
for the deep learning model. The spliced data are shown in Fig. 6. 

MFCC LPCC PLP PNCC ia-PNCC  
Figure 6: Feature map of noise collected by multiple channel hydrophone 

4.2.1 Parameter determination of convolutional neural network 
For this paper, five-layer convolutional neural networks were adopted. The underwater 
target recognition experiments were initially conducted with different convolutional 
kernels. The experimental results are shown in Fig. 7.  
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Figure 7: Comparison diagram of the effect of different Kernel size on test results 

In Fig. 7, underwater target recognition accuracy of different convolutional kernels is 
presented. The abscissa is the number of iterations, the ordinate is the accuracy rate of 
different convolutional kernels acting on underwater target recognition, and the thickness 
of the lines reflects the corresponding accuracy. It can be seen from the figure that as the 
number of iterations increases, the model accuracy also increases, but tends to be flat in 
the middle and late stages of the iteration. When the sizes of the convolution kernel are 
11×11 and 23×23, the recognition rates are higher, being 94.33% and 93.42%, 
respectively. For other sizes of convolutional kernel, the accuracy rates are not affected 
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by the size of the convolutional kernel. The accuracy was 78.7% when the convolutional 
kernel size was 19; 70.9% when the size was 27; 67.9% when the size was 15; and 53.7% 
when the size was 31. In addition, by comparing the curves when the convolutional sizes 
are 11 and 23, it is seen that accuracy rate curves tend to be flat in the middle and late 
stages of the iteration, indicating that accuracy does not change following the previous 
iterations. The former curve flattens before than the latter, indicating that it would enter 
into flat stage first. Furthermore, the Area under the curve (AUC) of the former is clearly 
higher than the latter, indicating that when the convolutional kernel size is 11, the 
performance is optimal.  

4.2.2 Results from different processing methods 
Experimental results of different underwater target noise processing methods with the 
convolutional neural network classifier of same parameters are showed in Tab. 3. It can 
be found that the recognition effect of the data preprocessed with PLP in the anechoic 
tank is best, and the effect of data preprocessed with ia-PNCC in real condition is best. 
Also, it can be found from the experimental results that the recognition rate of data 
obtained in anechoic tank with different noise perception feature extraction methods in 
the same convolutional structure classifiers are almost the same.  

Table 3: Comparison of experimental results of different noise processing methods 

Processing 
methods 

Recognition rate 
in anechoic tank 

Recognition rate  
in real condition 

MFCC+CNN 89.1% 67.3% 
LPCC+CNN 97.2% 76.58% 
PLP+CNN 98.9% 89.32% 
PNCC+CNN 93.24% 86.2% 
ia-PNCC+CNN 96.47% 90.6% 

The performances of the MFCC feature processing methods were quite different in the 
anechoic tank and under real-world conditions. This proved that the performance of the 
MFCC is better in a pure sound environment, but weaker in a noisy environment. Since 
the feature extraction of the LPCC is based on a linear assumption, its performance is 
generally better under the real conditions. The experimental results show that under the 
controlled conditions, the ia-PNCC feature processing and PLP perform similarly, and 
the performance of the ia-PNCC does not decline under real conditions. Furthermore, by 
decreasing the SNR (signal-to-noise ratio), the performance of the ia-PNCC is better than 
that of the PNCC, verifying the effectiveness and robustness of the method.  

5 Conclusion 
The improved PNCC auditory perceptual feature was adopted for underwater target noise 
feature extraction in this paper, and the underwater target noise signal perception attribute 
was quantified. Additionally, a convolutional neural network was used as the classifier to 
describe the auditory perception capacity of sonars for underwater target recognition. 
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Compared with the previous feature extraction methods, the improved PNCC auditory 
perceptual feature was able to offer improved feature extraction in noisy conditions, and 
the combination with the convolutional neural network was able to improve underwater 
target recognition accuracy. This was verified by the experimental results, in which the 
auditory perceptual feature offers advantages of simple calculation, large amounts of 
information, and wide application, etc. Combining the auditory perceptual features with 
such deep learning models as a convolutional neural network allows improvement of the 
underwater target recognition rate, providing a new direction for studies on underwater 
target recognition. 
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